
 

Microscopic Insight To Protein Functions 

 

 

Thesis submitted for the degree of 

Doctor of Philosophy (Science) 

in 

Physics (Theoretical) 

 

 

by 

Sutapa Dutta 

 

 

 

Department of Physics 

University of Calcutta 

July, 2018 



 

 

 

 

 

Dedicated to my family & friends….. 



iii 
 

Acknowledgements 

With deep regards and profound respect, I take this opportunity to convey my deepest 

gratitude to my supervisor Prof. Dr. Jaydeb Chakrabarti for introducing me to such an 

interesting and advanced field of research. His invaluable guidance, advice, technical 

discussion, constructive criticism, extensive support, constant encouragement and 

valuable suggestions kept me inspired throughout this research work. He has been 

always my friend, philosopher and guide, all moulded into one person. I found joy 

and enthusiasm for his research and dedication towards work. I am also very much 

grateful to my joint supervisor Dr. Mahua Ghosh for her extensive encouragement 

and spending her valuable time towards the academic discussions during my research 

work. ‘A good teacher knows how to bring out the best in student’, this completely 

goes well with her who is the pioneer of my journey to the beautiful yet mysterious 

world of bio-molecules.   

I would also express my gratitude towards Dr. Santasabuj Das, Scientist E of National 

Institute of Cholera and Enteric Diseases, Kolkata for his fruitful discussion towards 

flagellin project. Thanks also to my thesis and PhD committee members, Dr. Rajib 

Kr. Mitra, Prof. Priya Mahadevan of S. N. Bose National Centre for Basic Sciences 

(SNBNCBS) and Prof. Kankan Bhattacharyya of IISER Bhopal for their helpful 

comments and suggestions. A special acknowledgement goes to my senior Dr. Amit 

Das for his guidance and suggestions during early days of my PhD carrier. 

It is a pleasure to pay tribute also to my fellow group members who helped me during 

different phases of my works in their own unique ways. I am truly thankful to Dr. 

Manas Mondal, Dr. Laxmi Maganti, Dr. Mausumi Ray, Suman Dutta, Piya Patra, 

Camelia Manna, Arunava Adak, Abhik Ghoshmoulick, Rahul Karmakar, Sasthi 



iv 
 

Charan Mandal and Edwin Tendong. Especially, I would like to express my heartiest 

gratitude to my seniors, Dr. Samapan Sikdar and Dr. Paramita Saha who assisted me a 

lot to finish this journey. Their support, knowledge and love always motivated me. 

My special regards to all my teachers at primary, high school, undergraduate and 

postgraduate level who not only enriched my knowledge but also inspired me to grow 

as a human being. I extend my vote of thanks to Gouri didibhai, Shyamal sir, 

Purnendu sir, Subrata sir, AKB sir, Anathbandhu sir, Mousumi didibhai and Shyamal 

Adhikari sir. I gratefully acknowledge Saraswati Shishu Mandir, Barlow Girls’ High 

School and Jadavpur University for providing me the perfect ambience and 

educational support.  

I have been blessed with many good friends and this journey would not be possible 

without each of them. Special thanks to all of them particularly to Bijita, Suravi, 

Ashis, Bithika di, Sukarna, Sewli and Snehasish. I am especially grateful to Sankar 

for his moral support, encouragement and affection. I owe you a debt of gratitude for 

all that you have done for me. I extend my word of thanks to my seniors, Sreemoyee 

Di, Abhijit da, Gourab da, Suman da and Chiranjit da who helped me a lot during my 

days at SNBNCBS.  I would like to thank staffs of SNBNCBS Mess for all their help 

and service. 

I gratefully acknowledge S. N. Bose. National Centre for Basic Sciences for providing 

me wonderful research facilities. I am also thankful to all the faculty members and 

staffs of this centre for their sincere cooperation and help. Finally, special thanks to 

DST, Govt. of India for providing me INSPIRE Fellowship.  

Last but not the least, I express my deep sense of gratitude to my parents Nilkanta 

Dutta and Priti Dutta and my sister Sandita Dutta for their love, dream, 



v 
 

encouragement and moral support over the years of my study. Without their 

sacrifices, moral supports and blessings, the thesis would not have taken its shape. 

Once again, I acknowledge my deep gratitude to everybody who was important to the 

successful realization of thesis, as well as expressing my apology that I could not 

mention personally one by one. Many Thanks to all. 

 

Sutapa Dutta 

Department of Chemical, Biological and Macro-Molecular Sciences, 

S. N. Bose National Centre for Basic Sciences, 

Salt lake, Kolkata-700106, India. 



vi 

 

Abstract 

 The thesis is based on understanding static and dynamic fluctuations of protein 

dihedrals and to correlate the observations towards proteins function. This is 

illustrated for four different aspects that can modulate protein functions: (a) long 

distant communication between residues; (b) electrostatically heterogeneous surface 

of proteins; (c) changes in conformational thermodynamics of protein in different 

medium and (d) balance of forces leading to protein aggregation. 

Ligand bindings at long distant sites are often associated with protein 

functions. Here, we propose an approach to probe causal connection between distant 

binding residues of a small protein named ubiquitin (Ub). This is based on time 

dependent dihedral cross correlation function over μs long all-atom Molecular 

Dynamics (MD) simulation and from mathematical modeling. We have found that 

dihedrals of these functionally important yet spatially distant residues possess 

significant amount of temporal correlations with biologically relevant time scales. 

 The different natures of hydrophilic residues lead to heterogeneous 

distributions of charges over protein surface. We address whether this heterogeneity 

leaves imprint to the motions of the metal ions, which play pivotal roles in protein 

functions. Using mean squared displacement and self-van Hove function of the metal 

ions from μs long all-atom MD simulated trajectories; we find that the metal ions 

undergo anomalous diffusion due to trapping at different sites. However, if the 

strength of trapping is reduced, then the ions reclaim the normal Fickian diffusive 

profiles. 

 Conformational fluctuations are another factor that can tune proteins 

functionality. Here, we compute the changes in thermodynamics free energy and 

entropy of a bacterial protein, namely, flagellin in lipid bilayer with respect to 
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aqueous media. We use histogram based method on the equilibrium fluctuations of 

dihedral angles. The observations suggest that bilayer induced larger conformational 

stability to flagellin than water, and thus might play an important role in 

corresponding immune responses activated within the host cell upon bacterial 

adhesion. 

 Self-assembly of misfolded proteins is important in neurodegenerative 

disorders. We have studied protein aggregation using a model system having charge at 

the core but the solvophobic surface using Monte-Carlo (MC) simulation and mean 

field analytical treatment. The system exhibits aggregation primarily in presence of 

hydrophobicity mediated attraction. Electrostatic repulsion controls stability of finite 

size clusters or aggregates. 
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CHAPTER 1 

Introduction 

1.1. Protein, a complex system: 

A complex system
1
 consists of various interconnected parts which exhibit 

collective or emergent behaviors, different from that of the individuals. Studies of 

complex system are increasingly recognized in variety of interdisciplinary fields
2 

ranging from financial market, school of fish, ecosystems, non-linear fluids, immune 

system, granular media to bio-macromolecules including protein, DNA
1, 2

. Protein, is 

a complex bio-molecular system which performs variety of functions in living cell 

including enzyme catalysis, transportation of therapeutic molecules, responding to 

external stimuli
3-5

 to name a few.  

The basic building block of protein, this sophisticated bio-molecule, is twenty 

essential amino acids
3-5

, often called residues, which have similar backbone chemical 

composition but different side chains. The polypeptide chain formed by peptide bond 

(      ) between different residues is known as primary sequence of a protein
3-5

. 

In general, proteins need to fold into three dimensional compact structures starting 

from the primary sequence of amino acids in order to be functionally active. The three 

dimensional arrangement of atoms in a folded protein is known as protein 

conformation, containing local secondary structures like alpha helices and beta 

sheets
6, 7

 (Fig.1.1.(a)). Difference in H-bond patterns between backbones, electrostatic 

interactions
8
 between polar and hydrophilic side-chains are the primary governing 

factors
9, 10

 of protein conformation. In folded conformations, proteins expose their 
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hydrophilic groups to aqueous environment
8
, while hydrophobic parts remain 

buried
11

.  

Proteins undergo series of conformational fluctuations due to intrinsic thermal 

motions
12, 13

. The complete microscopic description of protein structures in different 

conformations is difficult to obtain from biophysical and biochemical studies mainly 

due to involvement of huge degrees of freedom. Moreover, having a wide range 

(femto-second (fs)-mili-second (ms)) of fluctuation time scales
13-15

 makes proteins 

dynamically complex to address. Local motions like backbone exhibits dynamics
16

 

over micro-second (µs) to nano-second (ns) regime, whereas side chain fluctuations
17

 

typically lie within pico-second (ps) to ns time window. For global reorientation, 

domain motions of protein occur at much slower time scales
18

 (µs-ms). However, 

these spontaneous fluctuations of protein in large ensemble of states around an 

average structure
14, 19

, separated by an energy barrier are largely associated with 

protein functionality. Thus, microscopic understanding of protein functions in spatio-

temporal paradigm presents major challenges due to variety of interactions as well as 

for fluctuations between different conformations. However, such studies are not only 

relevant to understand biological systems but also explore possibilities of novel 

materials of desired functionalities based on conformational fluctuations. 
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Fig.1.1.(a) Different secondary structures of protein. (b) Schematic 

representation of protein dihedrals. 

 

1.2. Proteins structure dynamics: 

Several experimental techniques including X-ray crystallography, NMR are 

capable of producing elaborate information on protein three dimensional conformations. 

However these experiments have their own limitations
12, 13

. X-ray crystallography
13, 20

 is 

possible only if the protein can be crystallized. Moreover, the data give information 

on a frozen conformation, accompanied by B factor
21

 that gives deviations of atomic 

coordinates about their mean positions, generated due to temperature driven 

fluctuations. B factor
21

 also contains model error, invalid restrains along with lattice 

imperfections. In case of NMR
13,22-24

, nuclear overhauser effect (NOE) provides bond 

vector constraints, chemical shift is associated with dihedral constraints, residual 

dipolar coupling (RDC) is related to orientation of bond vector and order parameter 

derived from spin relaxations can provide local motions from ps-ns time scales. 

However, NMR signals
13,22-24

 are not well resolved in particular for large proteins and 

proteins lacking in stable secondary structures.  

  

(a) (b) 



4 

 

Complementary to experiments Molecular Dynamics (MD) simulations
25-27

 

can provide microscopic details about motions in proteins starting from ps to μs time 

window. Classical all atom-MD
28

 can mimic physical motions of protein atoms, 

comparable to actual experimental conditions by solving Newtonian equation of 

motion. The dihedrals are chosen as conformational degrees of freedom or 

microscopic variable
29

 to illustrate protein conformation and dynamics. Proteins have 

three backbone dihedrals (     ) and up to five side chain dihedrals (         ) 

depending on the amino acid types. Dihedral angle is the intersecting angle between 

two adjacent planes for four consecutive atoms. In case of polypeptide backbone 

for                 (Fig.1.1.(b)), the angle between              and 

           planes is known as dihedral   . Similarly angle between            

and              is dihedral    where i is residue index. The side-chain dihedral, 

   defines the angle between              and               . The 

thermodynamic properties of a system of proteins
30, 31

 can also be computed through 

Monte Carlo (MC) simulation over a coarse-grained system interacting via model  

potentials. In this thesis, we consider examples of folded protein namely, ubiquitin, 

flagellin in order to probe static and dynamic fluctuations to relate their functionalities 

with underlying microscopic degrees of freedom. We also consider case of misfolded 

proteins which tend to aggregate through model calculations.  

1.3. Long distance correlations in proteins: 

Quite often proteins undergo series of ligand bindings at different sites. Such 

binding events are not only associated with numerous cellular processes, but also 

form the basis of technological applications
32

. The communication among distant 

binding sites in proteins is one of the fundamental questions which still remain largely 
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obscure. Recent simulation studies emphasize on existence of weak static correlation 

between dihedrals of such long distant residues
33-39

. However, the correlation between 

such residue pairs must persist till the binding partners reorient. Thus the correlation 

time scales should be comparable to the rotational correlation times (~ tens of ns
40

) of 

binding partners.  

Here we propose a theoretical approach to probe causal connection between 

distant binding residues of a small protein named ubiquitin
41

 (Ub) using time 

dependent dihedral cross correlation functions (TDCFs) over μs long all-atom MD 

simulation and mathematical modeling
42

. TDCFs or two point correlation functions
28

 

between two dihedrals of two different residues indicate how long the disturbance 

coming from one particular dihedral affects the other. The magnitude of TDCF on the 

other hand, implies the strength of correlation between two distant residues over time 

domain. We find that distant yet functionally important residues are connected by 

significant amount of dynamic correlations over biologically relevant time scales
42

. 

We apply this method to understand allosteric effect in protein, where ligand binding 

at one binding site affects that in another site called the effector site. We consider in 

particular allostery in Calmodulin
43

, important for Ca
2+

 dependent signaling in 

cellular processes
44

.  

1.4. Diffusion dynamics of metal ions in presence of protein: 

In a native structure, most proteins expose their hydrophilic residues to water. 

This leads electrostatically heterogeneous surface which can trap charged moieties to 

perform numerous functions in living cell
45

. The metal ions act as electrophilic and 

can bind with acidic and polar residues of proteins. However, identifying ion trapping 

surface patch of a protein is not straightforward due to limitations of experiments
46-49

. 
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Here we propose that dynamics of metal ions can indicate the metal ion binding sites 

on protein surface.  

We consider ubiquitin that is known to bind Zn
2+

 ions by some of its surface 

exposed acidic residues
50, 51

. We examine the mean squared displacement (MSD) and 

the self-van Hove function
52

 (self-vHf) of the ions in presence of the protein and 

compare the behavior in its free state, where protein is not present in the water box. 

The averaging is done over five different μs long all-atom MD simulated trajectories. 

In order to probe the relation between trapping propensity and diffusive dynamics of 

the ions, we mutate some of the Zn
2+

 binding acidic residues of ubiquitin to 

hydrophobic ones and then address the diffusive profiles of Zn
2+

.  

In absence of the protein the ions show normal Fickian diffusion. We observe 

that the Zn
2+

 ions undergo heterogeneous diffusion with a linear tail in self-vHf due to 

strong trapping at different binding sites over ubiquitin. However, if we reduce the 

interaction strength between ions and protein, then the self-vHf shows double 

Gaussian dependence. Thus, we conclude that this diffusion analysis, based on 

scattering technique can be considered as an approach to identify metal ion binding 

residues over heterogeneous surface of a protein. 

1.5. Conformational thermodynamics of protein in different medium: 

In addition to dynamic features, we also use static features to understand protein 

functions. Proteins need to recognize numerous ligands or peptide in order to perform 

various functions in living cell. There are several mechanisms behind this specific 

molecular recognition process, like lock and key, induced fit, conformational 

selection to name a few. Recent experiments
53-56

 suggest that the changes in entropy 

of a protein in different conformations play important role in ligand binding. 
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Conformational entropy
57-59

 of a protein emphasizes on how the thermal fluctuations 

between different states of the protein around a mean structure affect its functionality. 

In recent studies
92,93

, it has been shown that the difference in conformational 

thermodynamics between two states of a protein can be extracted from equilibrium 

fluctuations of the dihedral angles using Histogram based method (HBM). 

Equilibrium conformational changes in free energy is defined by   ( )  

        (      
   ( ))  (     

   ( ))  where       
   ( ) and      

   ( ) signify peak 

value of normalized probability distribution of protein dihedral   in two different 

states; one is ligand bound state (      
   ( )) and the other is ligand free state 

(     
   ( )), whereas    is the Boltzmann's Constant. Conformational entropy change 

associated with a particular dihedral   is calculated using           ( )  

      ( ) where       ( )       ∑         ( )           ( ),      ( )   

    ∑        ( )          ( ) and the sums are taken over histogram bins. 

We consider a protein, named flagellin that is responsible for bacterial 

virulence
60-63

. Flagellum is an organelle of bacteria involved in several biological 

functions, like chemo taxis, protein export, biofilm formation as well as adhesion and 

invasion
60-65

 to the host cells and is composed of 20,000 subunits of a protein, known 

as flagellin. Toll like receptor (TLR5)
66, 67

 is the host cell surface receptor protein that 

can recognize external virulent flagellin and activate signaling within host cells. 

Although potential role of flagellin for bacterial adhesion and invasion
68

 has been 

emphasized experimentally, the underlying microscopic mechanism remains elusive.  

Here, we study relative conformational stability of flagellin from different 

organisms in lipid bilayer compared to aqueous media. We consider flagellin from 

both invasive (fliC) and non-invasive bacteria (flaD). We find that both the flagellins 

are thermodynamically and structurally more stable in bilayer than water. We also 
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observe that TLR5 binding interface between fliC-TLR5 and flaD-TLR5 are not 

similar. This could be the reason for different signaling pathway in these two complex 

systems.  

1.6. Model studies on protein aggregation: 

Mutation, physiological stress and changes in physio-chemical conditions, 

changes in amino acid sequences or changes in nature of intra and inter molecular 

attraction can lead proteins to deviate from native structures, exposing the 

hydrophobic parts to water
69, 70

. This leads to self-assembly of peptide amphiphiles 

which are relevant in not only several neurodegenerative disorders
69, 71

 but also in 

nano-bio technology
72, 73

. The complete understandings of driving forces that lead 

aggregations are difficult from experiments and all-atom MD simulations
74-76

 due to 

involvement of large time and length scales. 

 We study protein aggregation using a coarse-grained model system having 

charge at the core but hydrophobic surface, using MC simulation and mean field 

analytical treatment. We observe that the system exhibits aggregation primarily in 

presence of strong hydrophobic interactions. However, for comparatively weaker 

hydrophobic strength, particles form finite size clusters. Electrostatic interaction on 

the other hand, controls stability of these finite size clusters.  

The thesis contains following chapters: Chapter 2 explains the details method 

of MD and MC simulations. Long distance correlations in protein are explained from 

time dependent dihedral cross correlation function analysis and mathematical 

modeling in Chapter 3. Chapter 4 includes details of diffusion dynamics of divalent 

metal ions in presence of electrostatically heterogeneous surface of protein. 

Conformational thermodynamics for flagellin in water as well as in bilayer is reported 
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in Chapter 5. MC simulation along with mean field analysis for protein aggregation is 

discussed in Chapter 6. The future outlooks based on our works are mentioned in 

Chapter 7.  
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CHAPTER 2 

Details of methods 

We use Molecular Dynamics (MD) simulations
1, 2

 as a primary tool to 

understand conformational rearrangement and the interactions of protein with other 

molecules. The thermodynamic properties of misfolded proteins
3, 4

 have been studied 

via a model system using the Monte Carlo (MC) simulation trajectories.  

2.1. MD simulation algorithm: 

MD simulation
5, 6

 is a powerful tool to calculate particle trajectory 

numerically. A three-dimensional system containing   number of particles with 

position   ̅   (  ̅   ̅    ̅̅ ̅) and momentum   ̅   (  ̅̅̅   ̅̅ ̅    ̅̅̅̅ ), is considered to 

interact via a pair potential  (   ), where        ̅     ̅,     , and  ,   are the particle 

indices. The force   ̅ acting on the  th particle by all other  th particles can be obtained 

from the gradient of  (   ), so the mathematical expression is written as   ̅  

 ∑    (   )
 
     Thus, the time evolution of this classically interacting system can be 

achieved by integrating Newton’s equation of motion,    ̅       ̅, where    and 

  ̅ are mass and acceleration of the  th particle respectively. The most widely used 

integrator for MD simulation is Verlet
5
, based on central difference algorithm. Using 

Taylor Series expansion, the updated position   of a particle at a time      is 

obtained by computing acceleration ( ) of the particle according the equation.2.1. as, 

      (    )    ( )   (    )   ( )                                                         (2.1). 
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Velocity is calculated using equation (2.2), 

        ( )     (    )   (    )    ⁄                                                             (2.2). 

Thus, the intrinsic error in position calculation is ~     and that for velocity is ~    . 

The MD trajectories can be used for both dynamics and static quantities of a system. 

2.2. Force-field for MD simulation of bio-molecules: 

NAMD
7
 and GROMACS

8
 are some standard packages that are used for 

parallel computation in order to simulate bio-molecules. In this thesis, simulation is 

performed only for the protein. One of the important step in simulating the protein is 

to choose appropriate force field (CHARMM
9
, AMBER

10
, and GROMOS

11
), which is 

essentially parameterization of potential energy surface
12, 13

 of proteins based on semi-

empirical quantum mechanical calculations or experimental data. All common force 

fields
9, 10

 generally include bonded interactions like bond stretching, bond rotations, 

torsional dihedrals via simple harmonic oscillations. Non-bonded interactions 

between transient dipoles are taken into account
36, 37

 using Van der Waals interaction; 

whereas contributions from permanent dipoles are manifested though electrostatic 

Coulomb interaction. 

 The expression for potential energy is: 

    ∑   (     )
 

      + ∑   (     )
 

       + ∑          (            

  )  + ∑   (     )
 

          + ∑   (     )
 

             + 

∑            [(
      

   
)
  

  (
      

   
)
 

] +  ∑
    

         
                                          (2.3).                                                                                                           

In equation (2.3), the first term describes energy cost associated with bond stretching. 

   is the bond stretching constant,     the equilibrium bond length, whereas the 
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deviation at bond length is (     )  Similarly, the second term is the cost of the 

changes in angle from the equilibrium value    with force constant   .    is the 

dihedral force constant,  , the number of multiplicity of the torsion angle and   is the 

phase shift. The fourth term stands for improper or outer plane bending. Here,    is 

the corresponding force constant and (     ) implies deviation of outer plane angle 

from its equilibrium value (  ). For the cross-term associated with the angle bending, 

1,3 non bonded interaction is considered. The change in distance between the 1, 3 

atoms (     ) is given in terms of a force constant   . In case of non-bonded 

interactions,        is the distance for which Van der Waals potential is minimum,   

is the width of potential well. For the Columbic interactions,    and    are charges of 

the particles  ,   respectively;    is permittivity of vacuum and   , the dielectric 

constant of the medium. However, for the classical calculations the atoms have been 

assigned fixed partial charges
36, 37

 which lead deviations from proper polarization 

effect.  

2.3. Periodic boundary condition and minimum image convention: 

In computer simulation, the system is kept in a central box and periodic 

boundary condition (PBC)
5
 is implemented in order to mimic the real infinite bulk 

system. The box of length   can induce surface effect, such that the particles close to 

the surface experience different forces than the bulk. To minimize the surface effects, 

it is assumed that the central box is surrounded by infinite replica, so that if any atom 

leaves the central box in course of simulation, its image enters the box from opposite 

face. The PBCs are accompanied with minimum image convention, where the 

interaction for one particular atom is considered only with the nearest image of 

another atom among all the boxes. In order to avoid interaction between an atom in 
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central box with its mirror image in other replica boxes, a cut off (       ⁄ ) is used 

for truncating long-ranged interaction. This also makes simulation less expansive. 

2.4. Particle Mesh Ewald (PME) methods: 

The long ranged contributions of electrostatic interactions are treated using 

Particle Mess Ewald (PME) method
14

, where the interaction potential is divided into 

two parts; the summation in short range part is computed in real space and the long 

ranged one is estimated in Fourier Space. The range of interaction originated by each 

point charge in the system is truncated by placing Gaussian charge distribution of 

opposite sign around that given charge. This screens the effective contribution of the 

point charge over all neighboring charges. Then the total screened short ranged 

potential is computed from sum over all atoms in the central box as well as over their 

images in replica boxes. Next a cancelling charge distribution with same shape and 

same sign of original point charge is added, so that the overall potential reduces to 

that of generated due to original charge.  

2.5. Simulation of protein: 

First, the initial structure of the protein is considered from protein data bank 

(PDB)
15

 depository or from homology modeling, which is a technique used to predict 

structure of an unknown protein using a known experimentally determined structure 

of a homologous protein
16

. A topology file containing values of the force constant and 

a position restraint file are required in order to keep protein structure intact throughout 

the simulation. Most of the biochemical processes in cellular conditions occur in 

aqueous environment, thus the protein molecule is solvated within a box either by 

explicit water model
9, 10

, containing minimized structure of water lattice or by implicit 
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model where solvent effect is modeled as continuum dielectric. The total charge of the 

system is nullified
9, 10

 by adding proper number of ions to avoid polarization of 

ensemble. A snapshot of protein with ions, solvated in water box is shown in 

Fig.2.1.(a).  

 

 

 

 

Fig.2.1.(a) Snapshot of protein solvated in water box along with ions. (b) Sample 

representation of RMSD of a protein over MD trajectories. 

 

After that we need to perform energy minimization
9, 10

, which removes bad 

contacts or inappropriate geometry of the model structure and leads to physically 

more reliable starting conformation, corresponding to any local minimum of the 

protein energy surface. In order to solve the equations numerically, entire simulation 

trajectories have been discretized
5
 into   number of steps and an integrator is used to 

proceed over associated time step (  ) for each   steps. Very small value of    can 

lead numerical accuracy but at a cost of expansive simulation, whereas large value of 

   can generate unstable simulation
5
 due to large fluctuations of energy. Generally    

~ fs, comparable to the mean collision time of the particles.  

Next step is equilibration
5
, where temperature of the system is brought around 

the desired temperature by coupling all atoms to a thermal bath. This initial 

equilibration is important in order to achieve well sampled trajectories, so that the 

ergodicity can be applied. At thermal equilibrium, temperature of the system is 

 
(b) (a) 
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directly connected to its kinetic energy through degrees of freedom. So, at the first 

phase of equilibration, in isothermal-isochoric (NVT) ensembles, the velocities are 

scaled
5
 by a factor √   ( )⁄ , where    is the desired temperature and  ( ) is the 

instantaneous temperature at time  . During the equilibration, the deviation in 

temperature decays exponentially with a time constant  . In second phase of 

equilibration, pressure is stabilized in isothermal-isobaric (NPT) ensemble, which 

closely resembles the experimental conditions. For the pressure coupling, an 

algorithm is used to rescale coordinates and box vectors of the system in every step. 

This has equivalent effect of a first-order kinetic relaxation of the generated pressure 

towards a reference pressure. The final step is production run, equilibration is ensured 

by plotting root mean square deviation (RMSD)
9, 10

 of the protein with respect to 

starting configuration over simulated trajectories. A sample diagram for RMSD is 

represented in Fig.2.2.(b). Thermodynamic variables, structural and dynamic 

properties of the protein can be calculated
9, 10

 using MD trajectories.  

2.6. MC simulation algorithm: 

 MC simulation
5, 6

 is the common method to get outcome of stochastic 

processes using random numbers and probability statistics. It is actually the 

equilibrium sampling done over statistical ensemble using random walk algorithm. 

The partition function
5, 6

   for a system of   number of particles is defined as 

   ∫         [ 
 (     )

   
], where    is the coordinates of all particles,    

associated momentum, Hamiltonian  (     ), the total energy (   ) of the 

system,    Boltzmann’s constant,   the temperature and          ⁄  is 

proportionality constant. The expectation value of any dynamical variable   is 

defined as       
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 ∫        (      )      (     )     ∫            (     )     ⁄ . 

As kinetic energy,   is solely the function of momentum, the above integration can be 

solved analytically for the momentum term.  

Instead of directly computing the integral ∫    (   )      (  )     , it 

is computed as; ∫    (   )      (  )     ∫         (  )     ⁄ . The 

term 
   [  (  )    ]

∫         (  )     
 gives the probability density of finding the system in a 

configuration space around   . So, instead of looking into the absolute probability, 

the relative probability of visiting different points in configuration space is taken into 

account.  

This sampling of probable configuration space is done using Metropolis 

algorithm; firstly a random particle at a random position is considered and the 

corresponding potential energy  (  ) is computed. Next, a random displacement   is 

given to the particle such that        , the potential energy at new configuration is 

represented as  (   ). If the changes in potential energy in new configuration with 

respect to the old one ( (   ) -  (  ) < 0) is negative, then the new configuration is 

chosen as the updated one. The probability of finding the particle in new position, 

        (  (   )    ⁄  and that for the initial one is        (  (  )    ⁄ , if 

the ratio (    ⁄ )   a random number generated between 0 and 1, then also the new 

position is accepted as the updated coordinate of the particle. The process is repeated 

for all the particles present in the system.  

Periodic boundary condition along with minimum image convention and a cut 

off (~ half of the box length) for interaction are implemented. In each MC cycle, the 

total number of trial moves for displacing all of the   number of particles is        
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and the numbers for which new position is accepted is written as        . If the 

amount of random displacement given to the particle is too small, then almost all 

moves will be accepted but the phase space will not be sampled properly. Similarly, if 

it is too large then almost every moves will be rejected, leading to poor sampling. So, 

during the course of simulation the value of maximum displacement is adjusted such 

that the acceptance ratio (             ⁄ ) reaches an optimal value ~ 0.5
5, 6

, which 

ensures the proper sampling of equilibrium phase space. The structural properties and 

thermodynamics of the system are computed over the simulated trajectories. 
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CHAPTER 3 

Long distance temporal correlations in proteins 

3.1. Introduction:  

Quite often bio-macromolecules undergo cascade of ligand bindings at 

different sites. Such binding events not only control cellular processes, but also lie at 

the heart of technological applications with bio-molecules as scaffold
1
. The 

microscopic basis of communication among the binding sites in bio-macromolecules 

is one of the fundamental questions which have drawn considerable attention, but still 

remains largely obscure. Motivated by this, in this chapter we make an attempt to 

understand the communication among functional residues in proteins, incorporating 

information of microscopic motions. 

Although experimental probes are limited
2, 3

, recent simulation works in this 

direction emphasize on the existence of covariance (Pearson Correlation Coefficient) 

between the instantaneous values of dihedral angles of such long distant residue pairs 

in a protein
4-10

. Non-zero but very small values of Pearson Correlation Coefficients 

have been observed among the dihedral angles of functional but spatially distant 

residues in a protein named ubiquitin, (Ub)
4
. However, information provided by 

Pearson Correlations is far from complete. Macromolecular binding takes place 

typically by rotational diffusion ranging in timescales of tens of ns
11

, so that the 

binding surfaces are mutually exposed. This means that the changes at sites upon first 

ligand binding must affect the downstream binding sites till this time. Such temporal 

information are absent in Pearson Correlation Coefficient. The information entropy 

transfer
10, 12

 approaches has been proposed to causally connect residues depending 
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upon the history of their correlated fluctuations which includes all non-linear coupling 

between the fluctuating variables. Not only that the computation of information 

entropy transfer is quite involved, but also the physical mechanisms leading to the 

non-linear couplings is not understood, primarily due to lack of experimental probes. 

Moreover, time is introduced in the formalism on an ad-hoc basis
12

.   

Alternatively, temporal cross-correlations of fluctuations of two physical 

quantities      and       at times   and    with respect to their mean values, also 

known as two-point correlations functions
13, 14

, are used to describe time scales of 

correlated stochastic processes
15

. The equal time correlation function,   =   , is the 

statistical Pearson Correlation. Temporal cross-correlation functions can be thought of 

generalization of Pearson correlation in time domain. Two-point correlation functions 

do not contain information on non-linear coupling. One major advantage of two-point 

correlation functions is that they are experimentally accessible by scattering 

techniques. Interestingly, temporal cross-correlations between fluorescence intensities 

show asymmetry with inversion in time which has been used to study co-localization 

of proteins
16

. This observation seems to suggest that temporally causal connections 

can be extracted from the two-point correlation functions. The power of two-point 

cross-correlation functions has not been exploited for in-depth understanding of bio-

molecular phenomena. Time dependent dihedral cross-correlation functions (TDCF) 

have been employed for correlation between protein residues only up to a few 

hundred ps
17

, far too low compared to the bio-molecular binding time scales to have 

that functional relevance. We have established in an earlier work
18

 from much longer 

simulations that TDCF can relate large scale changes in a protein upon ligand binding. 

With this backdrop we examine in this chapter TDCF by long computer 

simulations and mathematical modeling to understand functional co-ordination among 
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residues. We consider the case of a small protein, ubiquitin
19

 (PDB id: 1UBQ, 

Fig.3.1.(a)) involved in ubiquitination
20, 21

, a process ubiquitous among the eukaryotes 

by which ubiquitin attaches with a target protein to degrade the latter. The process is 

initiated by covalent attachment of Adenosine mono-phosphate (AMP) to C-terminal 

Glycine; G76 of Ub. Following this, ubiquitin activation enzyme-E1 binds at different 

residues of Ub
20-23

, (Figs.3.1.(b)-(d)). The question is: How do the spatially distant 

(~1.5 nm) residues get temporally correlated so that the binding information at one 

site at a given time affects the binding at other sites at a later time?  

 

 

 

 

 

 

 

 

Fig.3.1.(a) Cartoon representation of the crystal structure of ubiquitin (PDB id: 

1UBQ). (b) Correlated residues belonging to binding surface patch of ubiquitin. 

(c) H-bonded residues of that surface patch. (d) Residues participating in 

binding with E1 enzyme, involved in ubiquitination.  

 

We show that the TDCF can explain the causal connection between the 

functional residues of Ub in the time scale of tens of ns. We explain the qualitative 
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features of TDCF using simple mathematical model. Interesting aspect of our result is 

that TDCFs contain temporal information which may be useful to understand 

biological processes which are orders of magnitude slower than atomic motions 

without invoking the non-linear effects. The simulated trajectories give us unique 

opportunity to examine typical non-linear terms which we find to be less dominant 

than the TDCFs themselves. Moreover, we propose a dynamically correlated path of 

residues along which the perturbation starting from G76 upon AMP initiation can 

manifest in ubiquitin. 

 We also correlate dynamic aspects of TDCF with equilibrium thermodynamic 

responses of ubiquitin using statistical fluctuations of dihedrals. Thermodynamics 

stability between different conformations of a protein
24-27

 plays critical role in 

governing protein functions. In case of Ub, ubiquitination is initiated at terminal G76 

residue. In order to probe thermodynamic changes before and after AMP attachment 

to Ub, we simulate another system where G76 remains fixed through the entire 

simulation time. By freezing G76, we try to capture the perturbation given by AMP to 

G76 in real bio-chemical process. We find that the residues that are disordered or 

more flexible in perturbed state with respect to their free state, have weak correlations 

in time domain along with faster decaying time scales.  

The connection between TDCF and dihedrals equilibrium fluctuations have 

been addressed for another protein, known as Calmodulin (CaM)
28

. This protein is 

important
28

 for Ca
2+

 dependent signaling, involved in numerous cellular processes. 

The protein has
29

 two EF-hand motifs at each of the terminals, which are connected 

by a flexible linker helix (Fig.3.2.(a)). In order to maintain cellular regulation, CaM 

interacts with Orai1
30

, a plasma membrane protein that influx Ca
2+ 

from extra cellular 

environment into cytosol. 
 
It is found

31
 that a path of residues (Isoleucine; I100-
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Aspartic Acid; D93-Phenylalanine; F89-Glutamic acid; E83-Threonine; T79-Lysine; 

K75-Methionine; M71-E67-Valine; V55-M51-Glutamine; Q49-I44, in Fig.3.2.(b)) 

starting from the C-terminal domain of CaM and those can bind with Orai1, provide 

long distance connection to some residues belong to the N terminal domain of CaM. 

The residues belong to the path are destabilized and disordered in Orai1 bound state 

with respect to Orai1 free state and show prominent changes primarily in side chain 

dihedral distributions in two states
31

. We find that these residues are dynamically 

correlated with a significant amount of temporal correlations in Orai1 bound state
31

. 

Thus, the dynamic information obtained from TDCF calculation fit well with 

statistical observations.  

 

 

 

 

 

 

 

Fig.3.2.(a) Cartoon representation of the crystal structure of calcium bound 

Calmodulin (PDB id: 1CLL). (b) Path of correlated residues of Calmodulin in 

presence of Orai1, which connects C terminal domain to N terminal. 

 

The rest of the chapter is organized as follows: we describe the methods in 

section 3.2. Section 3.3. describes detailed results on TDCF analysis. Mathematical 
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modeling to address TDCF qualitatively is elaborated in section 3.4. Section 3.5. 

contains discussions, overall conclusion along with novelty of our work is mentioned 

in section 3.6. 

3.2. Methods:  

We perform 1.05 µs long all atom MD simulation of ubiquitin in NAMD
32

 

parallel package and the calculations are performed over equilibrated trajectories. 

Details of MD simulation protocol, computation of two-point as well as four-point 

correlation functions, calculation details of transfer entropy and conformational 

entropy are explained in this section. 

3.2.1. MD simulation: 

We perform MD simulation using NAMD
32

 at 310 K and 1atm pressure, 

following standard protocols for NPT ensemble. We use TIP3P water model, periodic 

boundary condition and CHARMM27
33

 force field
 

with 1 fs time step. 

Electronutrality is maintained by adding proper number of mono-valent ions Na
+
 and 

Cl
-
. Long ranged electrostatic interaction is included by PME

34 
method. Energy 

minimization was done for first 10,000 steps and simulation was performed for 1.05 

μs. Equilibration is ensured by RMSD plot over entire simulation time.  

In order to address disturbance given by AMP to terminal G76 of ubiquitin, we 

simulate another system following the same protocol that is used for unperturbed 

ubiquitin. Here, the terminal G76 remains frozen throughout the entire simulation 

trajectories. 

3.2.2. Computation of two-point correlation function (TDCF) : 

We have computed dihedral angles from the specified atomic positions obtained 

from the simulated MD trajectory. The computation of TDCF from the MD trajectory 
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has been done as follows: The series of the conformations is ordered in time with a 

given choice of initial condition. For any given time-difference     |      |, we 

compute the product between fluctuations of dihedral   of residue   and    of residue 

  for the l–th observation for a given    as     
             (   [        ]   

      )    [    
     ]        

   . Here, the angular bracket signifies ensemble 

average or mean of the respective quantity over simulation trajectory. The TDCF is 

given by     
   

         
 

  
∑     

             
  
   , where     

              

    
           √(                   

  )⁄   and var denoting the variance of quantity 

within parenthesis.    is the number of observations corresponding to given    . For 

instance, for   number of observations,     . Similarly,        which 

correspond to the data set                                       . 

The computation is done for sufficiently large    until     
            approaches zero. 

We extract time scale by computing numerically Laplace Transform of TDCF as, 

               ∫         
           

   

 
   .  

3.2.3. Computation of four-point correlation function: 

For a particular time interval    we compute four-point correlation function 

    
            between   dihedral of residue   and    dihedral of residue   as, 

    
            

 

  
∑      

                                
   ,where 

               denotes the average value over    observations. 

3.2.4.  Computation of transfer entropy: 

We use standard methodology for the computation of transfer entropy
15

. First 

we calculate the minimal embedding dimension (m)
35

 for two time series by the false 
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nearest neighbors method
36

. Next we compute mutual information (MI) using the 

TISEAN package
35

 for fluctuations of pairs of dihedral angles for different residues 

belonging to the path. We identify the embedding time intervals (τ) for which MI is 

optimum
10, 35

. We compute the transfer entropy
10

 between two degrees of freedom 

from the Shannon entropy and joint entropy using the MIToolbox
37

 for fluctuations of 

two time series using m and τ. 

3.2.5. Computation of conformational entropy: 

We simulate another system where G76 of ubiquitin remains fixed throughout 

the 1.05 µs long trajectories. The conformational changes in entropy associated with a 

particular dihedral   in perturbed state ( ) with respect to unperturbed free state ( ) 

of ubiquitin is defined by                     .       and       can be 

obtained using Gibbs entropy formula          ∑              ,       is 

normalized probability distribution in each  th bins and sum is taken over histogram 

bins.    is the Boltzmann's Constant.  

3.3. Simulation results: 

In this section, we explain trivial nature of the TDCFs, correlation strength and 

relaxation time scales shown by the correlated and anti-correlated dihedrals of 

functional yet distant residue pairs of ubiquitin. Followed by the convergence of 

TDCF over simulation time scale, TDCF map, dynamically correlated path of 

ubiquitin and the mechanistic aspects of TDCFs. Finally, we demonstrate TDCFs for 

the residues belong to allosteric path of a protein, named Calmodulin. 
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3.3.1. Correlated and anti-correlated dihedral fluctuations:  

We perform 1.05 μs long all-atom MD simulations
32

 for Ub with initial input 

from crystal structure
19

 in explicit water. We analyze data using the portion of the 

simulated trajectory where the root mean squared deviation (RMSD) of the backbone 

atoms is saturated (Fig.3.3.).  

We calculate the dihedral angles for backbone       and side-chain      of the 

residues of the protein. We plot the dihedrals    for residue pairs I13 and F45 denoted 

by      
 and      

 respectively as functions of time in Fig.3.4.(a). I13 and F45 have 

backbone distance (    ), given by that of their    atoms as large as 1.5 nm. Despite 

that both      
 and      

 exhibit correlated behavior: The increase in one is coupled to 

increase in the other till very long time. Similarly, for Histidine; H68 and I44 with 

     ~ 0.5 nm, the plots of      
of H68 and      

 of I44 as functions of time 

(Fig.3.4.(b)), reveal anti-correlated behavior even at long times. 

 

Fig.3.3. RMSD plot of 

ubiquitin over 1.05 μs 

simulated trajectory. 

 

 

 

3.3.2. Convergence in TDCF over MD simulated time scales: 

Now we proceed to quantify temporal correlations between these time series. 

We extract the TDCF between dihedral   of residue   and    of residue   in time 
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interval    from equilibrated trajectory. TDCF is denoted as     
           ,  for a time 

interval          . We compute TDCF from MD trajectory for three different sets 

of maximum time up to    500 ns, 950 ns and 1.05 μs of the simulated trajectory. 

Since the correlation functions are computed from the dihedral values at two time 

intervals over trajectory, averaging at larger time interval gets better with longer time 

trajectory. We show          
   

          (Fig.3.4.(c)) and          
   

          

(Fig.3.4.(d)) for three different cases. Figs.3.4.(c)-(d) show that data for trajectory up 

to    500 ns have differences with respect to larger time trajectories. However, data 

with trajectory up to    950 ns and 1.05 μs are comparable, indicating saturation in 

the temporal behavior of the TDCFs.  

 

Fig.3.4.(a) Dihedral angles as functions of time  ;      
 (black) and      

 (red). 

(b)      
 (black) and      

 (red). (c) Convergence of TDCFs for three different 

   500ns (green), 950ns (blue) and 1.05 μs (red);          
   

          and (d) 

         
             as functions of    .  
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3.3.3. TDCFs among functional residues: 

We further report our analysis based on all the data for the longest trajectory, 

   1.05 μs. Figs.3.5.(a) and (b) bring out further non-trivial aspect of the TDCFs, 

exhibited by several dihedral pairs, despite large separation between the residues. We 

show TDCFs for both forward and reverse direction, obtained by interchanging   and 

  and   and    for the longest trajectory.         
   

          shows statistical Pearson 

Correlation,         
   

            at       as indicated in Fig.3.5.(a). The function 

further decays with increasing time interval. Similarly,         
   

         , in 

Fig.3.5.(b) shows initial statistical Pearson anti-correlation,         
   

            at 

     following which it decays to zero for large   . We also observe in Figs.3.5.(a) 

and (b) that     
   

         is different in forward and reverse directions, the decay 

time scales being different indicating asymmetry in TDCFs.  

Fig.3.5.(c) shows representative cases of Laplace Transform             

of     
   

        , the correlation function. For small  ,                  has a 

maximum where there is a statistical correlation (Fig.3.5.(a)), while                  

<  0 and having a minimum in case of statistical anti-correlation (Fig.3.5.(b)). The 

asymmetry in              under interchanges of   and   and   and    is evident from 

Fig.3.5.(c). The peak value of             in  ,     
         is a measure of the 

strength, and the inverse of peak position gives a characteristic time scale     
   

 of 

correlation. These time scales (Table.3.1.) are tens of ns, in the regime of rotational 

diffusion time much larger than atomic fluctuation time scales. The log-log plots in 

Fig.3.5.(d) show decaying tail (      with exponent   for large  . The values of   
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(Table.3.1.)  show quasi-universality (  ~1.0). Additional cases for             are 

shown in Figs.3.6.(a)-(f)). 

 

Fig.3.5. TDCFs between various dihedrals of ubiquitin, (Black: forward 

direction, red: reverse direction); (a)         
   

          and  

(b)         
   

          as functions of  t. (c) Laplace Transform             of 

correlation function,                  (solid line) and                  (dashed 

line) versus   plots. (d) ln|                | versus ln  (solid line) and 

ln|                | versus lns (dashed line) plots showing algebraic tails. (e) 

Correlations plot between functionally important residues of ubiquitin; 

             versus     
            (f)     

   

 versus     
   

        for similar residues. 

The symbols have the same meaning in (e) and (f). 
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Table.3.1. Strength of TDCFs, correlation time scales and the exponents in larger 

frequency regimes for residue pairs having functional importance. 

Residue-pair Dihedral-pair 

 

 

 

Exponents( ) 

)

                   

   

lower/higher 

s 

 

(lower s/ 

higher s) 

|    
        |     

   

(ns) 

I13-V5       0.7 2.84 45.5 

T14-F45       0.7 2.08 71.4 

L69-H68      0.7 0.26 125.0 

H68-I44       0.8 4.25 45.5 

K6-F45       0.8 2.82 50.0 

I44-F45      0.8 3.63 55.6 

K6-H68       0.8 5.27 83.3 

I13-F45       0.8 3.83 125.0 

I13-L67       0.8 2.68 125.0 

R72-V70     0.9 2.74 100.0 

G76-R74     0.9 7.13 125.0 

K6-T12      0.9 1.15 125.0 

H68-L67      1.0 0.31 41.7 

R74-R72     1.0 10.25 100.0 

V70-L69     1.1 0.35 71.4 

V5-K6      1.3 0.15 55.6 

L67-V5      1.3 2.49 71.4 

K6-L67      1.6 0.25 83.3 

 

We next examine the TDCFs for functionally relevant residues
4
 of ubiquitin. In 

recent simulation studies
4
 statistical Pearson correlations are observed between back-

bone dihedrals of residue pairs (I13-F45, T14-F45, K6-F45, I13-Leucine; L67, I13-

V5, V5-K6, K6-H68, H68-I44 and I44-F45) of ubiquitin, which belong to the binding 

surface patch of Ub. We plot     
         and     

   

 for all these residue pairs as 

functions of     
           in Figs.3.5.(e) and (f) respectively. We observe that a strong 
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correlation exists between peak values of TDCFs and     
          . However, the 

timescales are not correlated to     
          . This is not surprising, for statistical 

correlation coefficients do not contain temporal information.  

 

Fig.3.6. Laplace transform of TDCFs between functionally important residues 

(Solid line: forward direction, dashed: reverse direction): (a)                

(black) and                (grey). (b)                 (black) and 

                 (grey).  (c)               (black) and                (grey). 

(d)                (black) and                (grey). (e)               (black) 

and                (grey). (f)                (black) and                 

(grey). 
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3.3.4. TDCF map and dynamically correlated path in Ub:  

Our analysis yields a detailed map of correlated residue pairs    and   , as 

shown in Fig.3.7.(a). For a particular residue pair    and    we compute 

      

   
         for every possible pairs of degrees of freedom (dof), like 

           
             

      
      

       
 . The dof pairs for which |      

        | 

is maximum is considered to determine the direction of correlation in time domain, 

namely, if any perturbation at    affects    at a later time or vice versa. We generate a 

76 76 matrix by noting |      

        | for all of the 76 residues of ubiquitin. By 

applying the condition of directionality we obtain the upper triangular matrix showing 

detailed TDCF map.  

This map can be used to understand correlated path among the residues. Let us 

consider the terminal residue G76 which binds to AMP during Ub activation in 

ubiquitination. The dihedral   of G76,      is correlated to Arginine; R74 by     , 

      and      
 both in forward and reverse direction. However, among all these 

correlated dihedrals         
        is the largest which we take as an indication that 

G76 is downstream correlated to R74 via dihedral   of both the residues. Similarly 

G76 is downstream correlated to other set of residues, like L73, L67, Q62, Tyrosine; 

Y59, L56, R54, D52, K48, F45, L43, Q41, Q40, D39, Proline: P38, K33, I30, K27, 

V26, E24, I23, D21, T12, T7 and V5. Among all the downstream correlated residues 

to G76 we find that R74 is having the shortest     , which is the mean distance 

between    atoms over the entire trajectory. Similarly, the closest downstream 

correlated residue to R74 is R72. In this way we construct the path of downstream 

correlated dihedrals of different residues,                             
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, as shown in a snapshot of ubiquitin obtained from simulation 

(Fig.3.7.(b)). Among these temporally correlated residues G76, R74 and R72 belong 

to the C terminal loop region. The residues V70, L69, H68 and L67 belong to β5, 

while V5 belongs to β1 in β strands of the crystal structure
19

.  

 

 

 

 

Fig.3.7.(a) TDCF map for any 

two residue pair in ubiquitin; 

Black represents downstream 

and Grey represents upstream 

TDCFs. (b) Residues belong to 

dynamically correlated path of 

ubiquitin. Solid line connects 

the residue pairs belong to β-

sheets, dashed line connects the 

pairs belong to the loop region. 

(c) Correlation peak versus 

distance fluctuations of residue 

pairs belong to temporally 

correlated path.  
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Crystal structure of ubiquitin activation enzyme-E1 loaded with Ub molecules 

indicates
21, 22

 that the hydrophobic surface patch of Ub including L8, I44, V70 and C 

terminal tail of Ub (G76, R74, R72) interact with the activation enzyme. The 

temporally correlated path with G76 contains many of the residues, like R74, R72 and 

V70. Besides, the slowest time scale in this path is that between G76 and R74, around 

125 ns. This time scale is comparable to the rotational time scale of the enzyme which 

is about 90 ns obtained using the Stokes-Einstein
38

 equation. Thus the path obtained 

using TDCF analysis is functionally relevant. 

3.3.5. Mechanistic view of TDCF:  

In order to get mechanistic view of long distance correlations, we calculate 

variance of the distances between residues belonging to the temporally correlated 

path. We generate average structure of ubiquitin over simulated trajectory. We 

superimpose     correlation plots for all residues of the protein in crystal structure 

as well as of in average structure (Fig.3.8.). We find that there are no changes in 

secondary structural element.  

 

Fig.3.8.     Correlation plot 

of residues in ubiquitin; filled 

rectangle represents the crystal 

structure and hollow rectangle 

shows the simulated average 

structure of ubiquitin obtained 

from equilibrated trajectory. 

 

 

 



39 

 

Next, we compute var(    ) which represents variance of     . Similarly for 

backbone-side chain distances, we calculate var(    ), where      denotes distance 

between    and    atoms of the residue pair. For side chain dihedrals, we compute 

var(    ), the variance of distance  between    atoms of the correlated pairs. We plot 

|    
        |  versus these variances in Fig.3.7.(c). We observe that the large 

correlation amplitudes are clustered near smaller values of the variance. This indicates 

that dihedral dynamical correlations are destroyed by large fluctuations. 

3.3.6. TDCF for allosteric path in CaM: 

     CaM, a Ca
2+

 binding protein is known to interact with a protein, known as Orai1
30

 

to regulate cellular functions in eukaryotes. There are some residues of C terminal 

domain of CaM which are reported to interact with Orai1. These residues of CaM 

show noticeable changes in side chain dihedral distributions in Orai1-bound state with 

respect to Orai1-free state. These residues are considered to form a path to connect N 

terminal domain of CaM with its C terminal region (Fig.3.2.(b)). Thus, any 

perturbation given at a particular residue belong to the C domain can modulate 

functionality of N domain. This type of long distance communication between two 

distant yet functionally connected residues generates allosteric
4, 39-41

 effect within a 

protein. 

     Here, we probe TDCFs between each pair of the residues belong to the allosteric 

path of CaM. We show two such representative cases for TDCFs in Figs.3.9.(a)-(b). 

We observe that the TDCF between    of E67 and    of V55,         
   

        ) 

(Fig.3.9.(a)) is initially correlated with a strong statistical correlation coefficient ~ 

0.69. However, with increasing time interval an anti-correlation (negative values) 

develops and finally the function decays to zero at larger time interval. On the other 
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hand, in Fig.3.9.(b)         
   

        ) exhibits initial anti-correlation, then small 

amount of correlation grows and gradually diminishes at larger time interval. We 

quantify the amplitude of the correlations from the Laplace transforms. We find that 

for the initially correlated pair,               ) develops a peak for lower   

(Fig.3.9.(c)) along with maximum value ~ 3.36. Similarly for the initially anti-

correlated pair,                  has a dip in lower frequency regime (Fig.3.9.(d)) 

along with a minimum value ~ 0.90. We take the magnitude of the maximum or 

minimum as the strength of dynamic correlations, as shown in Table.3.2. between all 

the residue pairs.  All our data represent that the residue pairs which belong to the 

path generated from static analysis are also correlated in time domain. 

 

 

 

 

 

 

 

 

 

Fig.3.9. Temporal correlations as functions of time interval    between residue 

pairs belonging to the path: (a)         
   

         
 
and (b)         

   
        ). 

(c) Laplace Transform of correlation function versus frequency plots: 

               ) and (d)                 . 
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Table.3.2. Amplitudes of temporal correlations between side chains dihedrals of 

residue pairs belong to the path. 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Mathematical model:  

We have used equation of motion of over damped coupled classical harmonic 

oscillators to mathematically model TDCFs between two different dihedrals.  

      ̇       
                                                                        (3.1)  

     ̇       
                                                                                   (3.2).

 Using Laplace Transform of equations (3.1) and (3.2) we model behavior of 

TDCF in frequency,   domain. Details are in Appendix I, Chapter 3. 

Residue Pairs Amplitude
 

I100-D93 0.41 

D93-F89 0.38 

F89-E83 0.91 

E83-T79 2.57 

T79-K75 0.38 

K75-M71 0.48 

M71-E67 0.13 

E67-V55 3.36 

V55-M51 0.36 

M51-Q49 0.90 

Q49-T44 0.93 
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We model the qualitative behaviors of the TDCF in terms of equations of 

motion of two dihedrals       and       which are coupled to each other with 

strengths    and    respectively. Let the characteristic frequencies associated with 

them be    and     They perform motions in a solvent experiencing drags 

proportional to     ̇  and     ̇  respectively
13

. We calculate the Laplace transformed 

correlation function from the equations of motion,  (          )    in frequency,   

by averaging over initial conditions on the variables. We find that in     limit, 

 (          )          
           (  

   
 (  

   
 )

  
⁄ )   , where      

           being 

the statistical correlation coefficient. There is thus maximum in the low   limit if the 

TDCF shows statistical correlation,      
             , while a minimum for 

statistically anti-correlated TDCF with      
            . These are qualitatively 

similar to low   behaviour of the simulated TDCFs. We get an algebraic tail for 

large  ,  (          )      
   where the exponent is universal and independent of 

the parameters in the model. This universality is revealed by the simulated TDCF, 

albeit with exponent 1.0. The difference in the exponent may be due to simplicity of 

the model equations of motion where all effects are neglected except solvent drag and 

mutual coupling. Moreover, we find that so far as          (          )      

(          )   as seen in simulations. 

3.5. Discussions: 

Direct probe of dynamical correlation among the dihedrals is difficult due to 

limitation of probes. However, our analysis suggests an indirect way of probing the 

dynamical correlations.  Our analysis shows that the residues, like R74, R72 and V70 
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lie in dynamically correlated path with G76 where ubiquitination initiates. We expect 

these residues to play an important role in the process which can be tested 

experimentally. R72 is experimentally known to give specificity to the ubiquitin 

activation enzyme-E1 binding
21, 22

. The role of the other residues needs to be looked 

into. 

The success of two-point correlation functions to bring out the spatio-temporal 

correlations lead us to examine the higher order correlation. We compute typical four-

point correlation functions between dihedral   of residue   and    of residue   for a 

fixed   , denoted by     
            which measures the variance of the correlated 

fluctuations of the dihedral angles for a given time window   .         
   

         , 

        
   

          are shown in Fig.3.10. Using two-point correlation functions we 

observe that |        
           | is about 0.63 (Fig.3.4.(a)) and |        

           | lies 

around 0.73 (Fig.3.4.(b)). Whereas |        
           | is around 0.15 and 

|        
           |  lies around 0.25 as for all    (Fig.3.10.). Thus the four-point 

correlation functions are smaller in the magnitude than the corresponding two point 

functions in the time domain of biological relevance. The higher correlations may be 

important for very large time scales involving large scale domain motions. 

 

Fig.3.10. Four-point correlation 

functions as functions of  t, 

        
   

          (black) and  

        
             (red). 
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Transfer entropy is another method to probe connection or information 

transfer between two variables. Here, we compute transfer entropy from mutual 

information
35

 between maximally correlated pairs of fluctuating degrees of freedom 

which constitute the functionally relevant path. We assign the directionality of 

entropy transfer between two residues by the larger magnitude of the transfer entropy 

for the correlated pairs in forward and reverse directions. For instance, in case 

of         
   

        ,      and      are the maximally correlated dof both in forward 

and reverse directions. We find that mutual transfer entropy -0.17 for      to 

     and that for the reverse direction is 0.55, indicating that the transfer of 

information takes place from      to      similar to experimental observations. We 

construct in similar way the direction of entropy transfer and time scales of the 

correlated dof over the path, as given in Table. 3.3. It is clear from the table that the 

directionality of path is not maintained between R74 and R72 where the entropy 

transfer takes place from R72 to R74. Moreover, the time scale of optimum mutual 

information is in sub-ns range, orders of magnitude shorter than biologically relevant 

time scales.  Thus the TDCF describes the functionally relevant path in more reliably. 

Table.3.3. Embedding dimension (m), optimal time interval (τ in ps) and transfer 

entropy for the residues belonging to temporally correlated path, both in 

forward and reverse direction. 

Forward 

direction 

(m,τ) of 

1
st
 

residue 

(m,τ) 

of  2
nd

 

residue 

Transfer 

entropy in  

forward 

direction 

Reverse 

direction 

(m,τ) of 

1
st
  

residue 

(m,τ) 

of  2
nd

  

residue 

Transfer 

entropy 

in  

reverse 

direction 

    

      

5, 5 5, 18 0.55     

      

5, 18 5, 5 -0.17 

    

       

5, 18 5, 5 0.52     

       
 

5, 5 5, 20 0.76 

    

      

5, 5 5, 11 0.62      

       
 

5, 20 5, 17 0.65 
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5, 11 5, 4 -0.07     

      

5, 4 5, 11 0.53 

    

       
 

5, 4  5, 5 0.14     

       
 

5, 2 5, 4 0.70 

     

       
 

5, 5 5, 9 -0.35      

       

5, 9 5, 5 -0.27 

     

      
 

5, 9 5, 10 0.66    

       
 

5, 3 5, 9 0.51 

 

 

Next, we address connection between dynamic responses of ubiquitin with 

respect to its conformational thermodynamics. In earlier studies
25, 26

, it has been 

reported that one can address changes in free energy      and entropy       of a 

protein in a given conformation with respect to a reference state using Histogram 

Based Method on dihedral equilibrium fluctuations. The destabilized        and 

disordered         residues of a particular state are found to participate in further 

binding activities in order to reduce free energy. Ubiquitin functions upon interaction 

with AMP at its terminal residue G76. Thus, in order to capture changes in 

conformational thermodynamics of ubiquitin before and after bonding with AMP, we 

further simulate ubiquitin by keeping G76 fixed over the simulation. We calculate 

TDCFs between G76 and the residues belonging to the dynamically correlated path as 

obtained in the unperturbed conformation. Next, we estimate changes in 

conformational entropy of those particular residues in perturbed state with respect to 

the unperturbed one.  

We extract strength of dynamic correlations and time scales between   dihedral 

of G76 and all other residues belong to temporally correlated path of ubiquitin, for 

each possible dofs (  ,   ,    ). We compute         for each    dofs of the 



46 

 

residues belong to dynamically correlated path in perturbed state with respect to their 

unperturbed conformation. Next, we plot     
         and     

   

 separately with respect 

to         in Figs.3.11.(a)-(b) respectively. We observe that     
         exhibits a 

strong anti-correlation with respect to changes in conformational entropy along with a 

correlation coefficient ~ 0.72. Similarly correlation time scales also show anti-

correlated behavior towards         with correlation coefficient ~ 0.50. Dotted lines 

represent linear fitting. Increase in conformational entropy signifies enhance in 

flexibility of that particular residue. Thus if a residue fluctuates more its correlation 

with G76 tends to decrease fast with lower strength of dynamic correlation.  

 

 

 

 

Fig.3.11. Anti-correlation between TDCFs and changes in conformational 

entropy for G76 and the residues belong to dynamically correlated path. (a) 

    
         vs         and (b)     

   

 vs        . 

 

3.6. Conclusions: 

To summarize, we show with long molecular simulations and mathematical 

modeling that TDCFs explain the causal connection between binding sites in Ub in 

the biologically relevant temporal regime
42

. More importantly, our studies indicate 

that non-linearties are not the primary deciding factor for causal connections between 

functional sites. Although the simulations are illustrated for ubiquitin activation 
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enzyme-E1 binding to Ub and Orai1 binding to CaM, the generality of our 

mathematical analysis shows that qualitative features of TDCF can be extended to any 

microscopic degrees of freedom. On a wider perspective, two point cross-correlation 

functions between relevant microscopic variables may provide a correct description of 

bio-molecular function. The related kinetics in terms of underlying microscopic 

dynamics can be explained without invoking the non-linear effects.  

We probe connectivity between changes in conformational entropy of ubiquition 

in two different states with the dynamic response manifested by TDCFs. Moreover, 

we observe that in case of calmodulin, the residues that belong to allosteric path, show 

noticeable changes in dihedral distributions along with significant TDCFs. The 

correlated behaviour between TDCFs and conformational entropy suggest that TDCF 

might be considered as an alternative theoretical approach to address static and 

dynamic fluctuatios of proteins to associated thermodynamics.  
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Appendix I 

Over damped equations of motion in the long time limit: 

The over damped equations of motion in long time limit are: 

     ̇       
                                 (1),                                                                                                                                                                                                              

     ̇       
                                (2). 

Using Laplace transforms of equations (1) and (2) we obtain,  

              
                          (3),                                                              

                  
                          (4),  

or writting equation (3) and (4) in matrix form: 

 .
  

        

    
      

/ (
     

     
)     (

       

       
)  (5). 

Denoting, 

   .
  

        

    
      

/ and       |
  

        

    
      

| we get, 

 (
     

     
)    .

  
        

    
      

/

  

(
       

       
),  

(
     

     
)    

 

    
.
  

         

     
      

/ (
       

       
). 

Equation (5) yields the following expressions: 

         
 

    
[       (  

      )            ] (6), 
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[          

                  ] (7). 

We construct the product between       and       is using equation (6) and (7)  

    and taking average over initial condition to get the TDCF       

 (          )    
 

        
     

 (  
      ) 

              

                         (  
      )   

                        

                                   
    

                      (8). 

  Here,                     ,                       and 

                                    
                        .  

   Introducing these in equation (8), 

                 (          )        
 

        
    

   
     

                   *( 
    

                     ) –     
          (  

       
   )+  *(        

          (  
   

   

                     ))   (  
 

 
  

 
        

   
 )+      (9). 

   One can find from equation (9) that for large  , the leading term in numerator is    

  and that in denominator is   . Thus  (          )         Let us now consider    

           limit. Expanding the numerator and denominator in equation (9),    
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       (          )    
 

(  
   

       )
  (  

   
     

                   *( 
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From equation (10) we obtain coefficient of   , 
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Assuming   
   

         consider the terms having highest order of      that is 

independent of      and have     
           dependence. In this limit the coefficient of 

   is ~      
          

  
   

 

(  
   

 )
    . Thus for statistical anticorrelation (    

            

   coefficient of    becomes +ve quantity which implies minimum value of 

            for low  . For initial correlation (    
               coefficients of    

remain –ve, implying a maximum of             for small  .  

Interchanging   and   and    and    in equation (1) and (2), it is easy to check that 

asymmetry in TDCF that   (          )     (          )    
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CHAPTER 4 

Anomalous dynamics of metal ions in presence of a protein 

4.1. Introduction: 

The proteins functionality involving ligand binding are mediated primarily via 

surface interactions
1, 2

.  Apart from the obvious importance in cellular processes, 

ligand attached proteins have large potential for bio-nanotechnological applications
3-5

 

due to their easy tenability by external conditions, like temperature, pH and so on. In 

this chapter, we report diffusion profiles of the metal ions in presence of 

electrostatically heterogeneous protein surface and connect the observations towards 

proteins functionality. 

 The microscopic basis of ligand-protein surface interaction is far from 

understood. Recent bioinformatics studies
6
 indicate that ion-dipole interaction over 

protein surface provide useful insights to functional activities of protein. Protein 

surfaces are quite intriguing
7
: Firstly, water soluble proteins expose their hydrophilic 

groups, both polar and charged to aqueous environment, leading to electrostatically 

heterogeneous surface composition
8
. Such surface heterogeneities are probed by 

Single-Molecule tracking experiments
9
. Secondly, the protein surface fluctuates due 

to internal motions of the atoms, studied extensively in the past both experimentally 

and theoretically
10-13

.  

Ligand-protein binding has been investigated through static perspectives 

primarily via x-ray crystallography
14

 and nuclear magnetic resonances
15

. Both 

methods albeit being capable of producing microscopically the most elaborate 
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information, have their own limitations. Metal ions binding sites can be predicted 

using solution NMR
15

, although results depend on protein stability and spectral 

quality. NMR relaxation can also predict metal ion bindings but this experiment is 

suitable only for the paramagnetic ions
16

. In case of X-ray
14

, crystallization condition 

and modeling technique can affect protein conformation, ligand position and may lead 

to wrong ligand binding site. The spectroscopic analysis for characterizing metal 

associated proteins, undergo potential loss of native metal ions due to protein 

expression protocols
17

. High-throughput X-ray absorption spectroscopy can predict 

metal type but cannot locate the binding sites
18

 which is retrieved by prior knowledge 

of bioinformatics and computational model
19

. 

  In this study, we examine theoretically the possibility of using dynamic 

information towards prediction of metal ions binding sites over a protein surface. In 

order to illustrate this we consider dynamic properties of metal ions in the vicinity of 

a protein in aqueous environment. We address how the heterogeneity of electrostatic 

interaction on dynamic protein surface leaves imprint on ionic motion. Metal ions are 

present in trace amount (~ mM concentration
20

) in cellular environment but can 

control folding path and function of a number of proteins
21

. We choose a small 

protein, named, ubiquitin that plays an important role in numerous cellular processes 

like transcription, translation, cell trafficking to protein degradation and is known to 

bind different divalent metal ions (Cd
2+

, Pt
2+

, Zn
2+

, Mg
2+

, Ca
2+

). The crystal structure 

(2XK5.PDB)
22, 23

 shows that the surface exposed acidic residues including E16, E18, 

D21, D32 and E64 of ubiquitin can bind numerous Zn
2+ 

ions (Fig.4.1.(a)). The 

heterogeneity of electrostatic surface of ubiquitin is depicted in Fig.4.1.(b). 

 The dynamical features in condensed matter systems are typically 

extracted from the self-van Hove function (self-vHf)    (     ), the probability 
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distribution of displacement    of particles in time interval   ; and the MSD, the 

mean squared displacements of a tagged particle from an initial position
24

. The self-

vHf and MSD can be measured by neutron scattering and DLS experiments
25-28

 

respectively. We compute the self-vHf and MSD of Zn
2+

 ions
 
in presence of  ubiquitin 

from all-atom molecular dynamics (MD) trajectories
29

 in an electro-neutral aqueous 

medium at low salt (ZnCl2) concentration (~ 20 mM). We observe that Zn
2+ 

ions have 

non-Gaussian self-vHf along with exponentially decaying tail and MSD increasing 

linearly in time. This is quite unlike normal diffusive motion of free Zn
2+

 ions without 

any protein, where the self-vHf is Gaussian and MSD, linear in time. This 

heterogeneous diffusion is due to strong trapping of the ions on the heterogeneous 

protein surface. In order to probe the connection between diffusion dynamics of Zn
2+ 

and the trapping, we study two more systems; in one case we mutate the acidic 

residue E18 to hydrophobic Alanine and for the second one, we mutate both the E18 

and D21 into Alanine. We observe that for the mutated cases, the self-vHf of Zn
2+ 

exhibits Gaussian profile, albeit double Gaussian nature. By mutating acidic residues 

into hydrophobic ones, the interaction between Zn
2+ 

and the acidic residues gets 

significantly reduced. As a consequence, Zn
2+ 

ions get attached to isolated residues 

intermittently, leading to double Gaussian profile.  

The rest of the chapter is organized as follows; we describe methods in details 

in section 4.2. Results are elaborated in section 4.3. We discuss an application for an 

uncharacterized protein in section 4.4. and the conclusion is given in section 4.5. 
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Fig.4.1.(a) Crystal structure of ubiquitin in presence of Zn
2+

, showing the 

binding residues. (b) Electrostatic surface of ubiquitin, (red; -ve charge and blue; 

+ve charge distribution). 

 

4.2. Methods: 

In this section we provide details of MD simulation with analysis over the 

trajectories. 

4.2.1. Details of MD simulation: 

We consider the initial conformation of monomeric ubiquitin in presence of 

seven Zn
2+ 

ions from the available crystal structure and perform 0.5 μs long all-atom 

MD simulation. The salt concentration for ZnCl2 is ~ 20 mM. We use the standard 

protocol for isothermal isobaric ensemble (NPT) with 310K and 1 atm pressure using 

GROMACS
30

 package. Electro-neutrality is achieved by adding proper number of 

Na
+
 and Cl

-
 ions and periodic boundary conditions are implemented. The protein is 

solvated with water in a cubic box of dimension ~ 80.0  . The interactions between 

different atoms have been modeled using the GROMOS9653a6 force field
31

 along 

with SPC 3-point water model for water molecules. Long ranged electrostatic 

interaction is estimated by particle mesh Ewald
32

 method. Simulation time step is 1 fs.  
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The dynamical quantities are computed over unfolded trajectories. In order to 

get better average, we perform five different simulations using different initial 

configurations. The equilibration is ensured from the root mean squared deviation 

(RMSD) (Fig.3.2.(a)) of the    atom, which is the first carbon atom attached to the 

functional group of each amino acid. The analysis has been carried out for the last 200 

ns for each trajectory of total time up to 500 ns. Data for length is scaled by diameter 

of carbon atom in our analysis. We follow the same protocol to simulate Zn
2+ 

in 

presence of mutated structures of ubiquitin (RMSDs shown in Figs.4.2.(b)-(c)) and 

also for the free Zn
2+

 diffusing within a water box.  

 

 

 

Fig.4.2. RMSD for the     atom of 

each residues of the protein shown 

for five different trajectories for 

three different cases of ubiquitin; (a) 

Crystal structure of ubiquitin in 

presence of Zn
2+

, (b) For the one 

mutation case of ubiquitin in 

presence of Zn
2+ 

and that for (c) the 

two mutation case.  
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4.2.2. Details of self-vHf calculation: 

We generate self-vHf for the ions using
33

,     (     )   
 

   
   

∑  (    |    ( )       (    )|)
 
    . Here,     (     ) denotes the coordinates 

of the ith ion of a given ionic species   after time interval    starting from initial 

position,     ( ). N is total number of ions of a particular species in the system and   

the number density of the ions. The angular brackets denote average over choices of 

{    ( )} associated with each    over the five different trajectories. Further averaging 

is considered by taking the equal length of equilibrated trajectory with 21 different 

origins chosen between 300-320 ns at an interval of 1.0 ns for each single trajectory. 

This time interval is comparable to typical time scale of protein backbone motion
34

.  

4.2.3. MSD calculation: 

The diffusion dynamics investigated in terms of MSD
35

 plot gives 

displacement of the particle over time from its initial position. Two well-defined 

regimes
35

 on MSD have been reported theoretically as well as experimentally, 

ballistic regime at shorter time interval where MSD has square dependence on time 

( ) and diffusive regime where MSD linearly depends on   at larger time interval. 

However, sub-diffusive motion
36

 along with MSD ~    where     or plateau region 

can exist in MSD over  , for diffusion in crowded medium. This indicates caging
37

 

effect, the trapping of the particle by neighboring environment on intermittent time 

scale.  

We compute MSD of the ions of a given species   
as    

 ( ) over equilibrated 

trajectories using
38

:    
 ( )    

 

 
 ∑ |    ( )       ( )|

  
    , with ensemble 

average over five different trajectories along with 21 different origins. The 
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translational diffusion coefficients (D) are obtained from slope of MSD vs   plot in 

the long time limit
24

. 

4.2.4. Density of the ions around the residues: 

We compute the density of ions about the known Zn
2+

 binding residues of 

ubiquitin as   ( )    
  (    )

   (     )      
 . Here R is the separation between an ion 

of the   species and    atoms of a residue.   (    ) denotes the number of ions in a 

spherical shell of radius   and      .   is the total number of ions, whereas    

implies number of residues taken into account. The angular brackets define average 

on structures over five different trajectories. 

4.3. Results:  

The self-vHf of a system is the density-density auto correlation function. In 

this section, we elaborate different nature of self-vHfs for Zn
2+

 ions in four different 

circumstances. Firstly, we study the diffusion dynamics of free Zn
2+

, secondly, in 

presence of ubiquitin, where the ions are trapped to surface residues. We next analyze 

how the diffusivity of the ions is changed if we reduce the strength of interaction by 

mutating the hydrophilic residues to hydrophobic ones. The self-vHfs are computed 

from the coordinates of Zn
2+

 ions at different time intervals and averaged over 

different trajectories. The time intervals for these spatio temporal distributions of Zn
2+

 

ions are computed from    = 0.5 ns to 3.0 ns. Beyond this, the magnitude of the 

probability function is reduced significantly and thus it leads to large statistical error 

in data interpretation. Moreover, the Gaussian nature of self-vHf is reclaimed at 3.0 ns 

for each case. This suggests that this time interval is sufficient enough to capture the 

entire diffusion dynamics of the ions over the simulated trajectories.  
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4.3.1. The self-vHf for Zn
2+ 

ions: 

We show the behavior of self-vHf for Zn
2+ 

ions
 
over different   , for four 

different circumstances: case (I). Zn
2+

 moving freely in water box (     
( ) (     )); 

case (II). Zn
2+ 

in presence of non-mutated binding residues of ubiquitin 

(     
( ) (     )); case (III). Zn

2+
 in a system, where one acidic residue E18 is mutated 

to hydrophobic Alanine (     
( ) (     )) and finally case (IV). in presence of double 

mutations, both E18 and D21 are mutated to Alanine (     
( ) (     )). The logarithmic 

of self-vHfs vs    plots for various cases are shown in Figs.4.3.(a)-(f) and in 

Figs.4.4.(a)-(f). The data for        
( ) (     ) at    (= 0.5 ns) is given in Fig.4.3.(a). In 

order to extract functional dependence of      
( ) (     ) over   , we fit this using 

square dependence as indicated by the dotted line. The goodness of the fit (  ) along 

with the fitting errors (  ) are given in Table.4.1. Here, we observe that      
( ) (     ) 

is Gaussian in nature. The same nature is observed for    = 2.0 ns (Fig.4.3.(b)) as 

well. Finally,      
( ) (     ) shows square dependence over larger    at further larger 

   = 3.0 ns (Fig.4.3.(c)). 

We follow the same analysis for      
( ) (     ) in presence of ubiquitin in 

Figs.4.3.(d)-(f). We observe that unlike the free case,      
( ) (     ) shows deviation 

from square dependence over    at    (= 0.5 ns) in Fig.4.3.(d). It exhibits square 

dependence up to a threshold value (     1.90) of   . Beyond that   , it fits better to a 

linear dependence, suggesting existence of long exponential tail in self-vHf. This 

linear tail in self-vHf persists up to    = 2.0 ns (Fig.4.3.(e). Although, in this case the 

square dependence is observed up to a larger value of (   ~ 4.00) than the previous 
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one. Finally, at a further larger    (= 3.0 ns),      
( ) (     ) becomes Gaussian 

(Fig.4.3.(f)).  

We next consider self-vHf for Zn
2+ 

ions in mutated cases (Fig.4.4.(a)-(f)). 

Fig.4.4.(a) indicates that in presence of singly mutated ubiquitin, there are two 

different square dependences in      
( ) (     ) for two different regimes of   . The 

first Gaussian dependence persists up to a certain value of    ~ 4.00, after that 

  ,      
( ) (     ) shows a different square dependence. The profile remains similar at 

   = 2.0 ns (Fig.4.4.(b)), along with slightly increasing range of    ~ 4.10. We get 

back the Fickian Gaussian profile of self-vHf at    = 3.0 ns (Fig.4.4.(c)) for larger   . 

We also observe that the nature of      
( ) (     ) remains similar to      

( ) (     ) for 

various    (Figs.4.4.(d)-(f)). We find that unlike the free case, in presence of strong 

electrostatic attraction, exerted by the acidic residues of ubiquitin, Zn
2+ 

ions show 

linear tail in corresponding self-vHf. However, even by single mutation of the acidic 

residue reduces the electrostatic attraction that leads to noticeable changes in self-

vHfs of the ions 
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.   

  

Fig.4.3.        
( ) (     ) and        

( ) (     ) vs    plots for three different time 

intervals. (a) Normal Gaussian diffusive profile for the free Zn
2+

 ions at    0.5 

ns, that for (b)    2.0 ns and (c)    3.0 ns. (d) Deviation from Gaussian 

dependence of self-vHf of the ions in presence of ubiquitin. Square dependence is 

prominent for small    and linear tail at larger    as indicated by the solid lines. 

(e)        
( ) (     ) at    2.0 ns. (f) Gaussian nature of      

( ) (     ) is retained 

at    3.0 ns. 
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Fig.4.4.        
( ) (     ) vs    plots for three different time intervals. (a) 

Deviation from normal single Gaussian dependence, double Gaussian diffusive 

profile for the Zn
2+

 ions at    0.5 ns, that for (b)    2.0 ns and (c) Gaussian 

nature of      
( ) (     ) is retained at    3.0 ns. (d) Double Gaussian behavior 

for      
( ) (     ) at    0.5 ns and (b)    2.0 ns. (c) Fickian diffusion is 

obtained at     3.0 ns. 
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Table.4.1. Fitting parameters for self-vHf of Zn
2+

 ions in different surroundings.  

System    (ns) Fitting Range (  )       

Zn-free 0.5 square 1.00-5.50 0.99 0.002 

Zn-free 2.0 square 1.00-5.00 0.94 0.002 

Zn-free 3.0 square 2.00-10.00 0.98 0.009 

Zn in no mutation 0.5 square 0.60-1.90 0.95 0.003 

Zn in no mutation 0.5 linear 2.20-7.00 0.99 0.004 

Zn in no mutation 2.0 square 0.50-4.00 0.98 0.007 

Zn in no mutation 2.0 linear 4.00-9.00 0.99 0.009 

Zn in no mutation 3.0 square 2.00-8.00 0.94 0.008 

Zn in one mutation 0.5 square 0.50-4.00 0.98 0.008 

Zn in one mutation 0.5 square 4.50-9.00 0.98 0.008 

Zn in one mutation 2.0 square 0.75-4.10 0.98 0.009 

Zn in one mutation 2.0 linear 5.00-10.00 0.98 0.009 

Zn in one mutation 3.0  square 2.00-7.00 0.97 0.009 

Zn in two mutation 0.5 square 0.50-4.00 0.98 0.007 

Zn in two mutation 0.5 square 4.90-9.00 0.98 0.007 

Zn in two mutation 2.0 square 0.75-4.10 0.98 0.004 

Zn in two mutation 2.0 square 5.00-10.00 0.99 0.007 

Zn in two mutation 3.0 square 2.00-7.00 0.96 0.006 
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4.3.2. MSD of the ions: 

Next, we compute MSD of the ions in all of the four different circumstances. 

Fig.4.5. shows that     
 ( ) in each case depends linearly on  . The translational 

diffusion coefficient of Zn
2+

 (   ) in free case is obtained as ~ 0.65   10
-5

 cm
2
 s

-1
 

and that in presence of ubiquitin is ~ 0.34   10
-5

 cm
2
 s

-1
, whereas for the one mutation 

system it lies ~ 0.42   10
-5

 cm
2
 s

-1 
and that for two mutation ~ 0.48   10

-5
 cm

2
 s

-1
. 

The D values for free Zn
2+

 in aqueous solution
39

 at room temperature is reported to be 

around 0.70   10
-5

 cm
2
 s

-1
. However, in presence of ubiquitin, Zn

2+
 ions diffuse at 

slower rate in mutated as well as in non-mutated case. Although, the rate of slowing 

down of diffusion coefficient is much more prominent in presence of unmutated 

ubiquitin. 

 

Fig.4.5. MSD;     
 ( ) as a function of 

time  , black: free case, red: in presence of 

two mutation, green: in presence of one 

mutation and blue: for nonmutated 

structure of ubiquitin. 

 

 

4.3.3. Dynamic heterogeneity: 

The Gaussian self-vHf and linear dependence of MSD over   are 

characteristics of Fickian diffusion dynamics in a normal liquid
24

. However, linear 

MSD but self-vHf with exponential tail has been observed in many soft matter 

systems
40

. The normal Gaussian self-vHf is retrieved only at large time. This behavior 

is known as non-Fickian diffusion
40-45

 and can be observed if the particles show 

signature of trapping
25

. In general, slowly varying heterogeneous fluctuations of 
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environment comparable to the fast jiggly dynamics of diffusive particles lead to 

Brownian yet non-Gaussian diffusion profile
40, 45, 46

. The non-Fickian dynamics has 

been phenomenologically described in terms of distributions of diffusion 

coefficients
40-45, 47

, where instantaneous diffusion coefficient of individual tracer 

particles changes gradually. At times less than diffusivity correlation times, motion of 

each particles form local domain of given diffusivity, which leads to spatial 

heterogeneity
41-43

. However at larger time scales Gaussian dynamics is restored along 

with an overall mean diffusion coefficient. This is a signature of dynamic 

heterogeneity so that there are particles in the system having characteristic time scales 

faster or slower than the average
40-45

. Our data suggest non-Fickian diffusion 

dynamics of metal ions
 
in presence of strong interaction of the protein surface 

residues. Similarly, existence of double Gaussian parameterization of self-vHf
48, 49

 

can correspond to two regions with two different diffusion coefficients. Although, 

trapping effect is not associated here, some of the ions still can undergo the effect of 

weak interactions, leading differences in mobility.   

In order to probe dynamic heterogeneity
40-45

 microscopically, we follow 

motions of the individual ions in all four cases. We generate their MSD plots for 

different Brownian trajectories. In Fig.4.6.(a), we show MSD of different Zn
2+

 ions in 

presence of ubiquitin. We observe that      ( )
 ( ) for   = 1 (first Zn

2+
 ion) shows 

different slopes in different time intervals, like between 0-50 ns, and 100-150 ns. But 

in case of   = 3, MSD exhibits overall linear dependence on  . Thus the motions of 

different Zn
2+

 ions are different. Next we consider MSD of   = 1 Zn
2+ 

ion in different 

trajectories. We observe that      ( )
 ( ) (Fig.4.6.(b)) shows linear dependence of 

MSD on   with locally varying slopes in one trajectory, while exhibiting complete 
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linear dependence on   in another trajectory. However, this kind of heterogeneity is 

not observed in MSD plots of the ions in presence of mutated ubiquitin (Fig.4.6. (c)). 

 

Fig.4.6.(a) MSD,     ( )
 ( ) vs   plots of different Zn

2+ 
ions for unperturbed 

ubiquitin in one particular trajectory and (b)     ( )
 ( )            in different 

trajectories indicate dynamic heterogeneity. (c) MSD,     ( )
 ( ) vs   plots of 

different Zn
2+ 

ions for doubly mutated ubiquitin in one particular trajectory 

indicating no such strong signature of heterogeneous diffusion. (d) Distributions 

of diffusion coefficients of the ions (   ( )) in three different cases; black: free 

case, red: in presence of two mutation, green: in presence of one mutation and 

blue: for nonmutated structure of ubiquitin. The scaling of x axis is represented 

as D   10
-8

 cm
2
 s

-1
.  

 

We calculate slopes in MSD plots for each ion in different trajectories and 

time windows to estimate the diffusion coefficients. For example, for the first Zn
2+

 

ion (  = 1 in Fig.4.6.(a)), we compute slopes of MSD for two different time intervals 

(0-50 ns, and 100-150 ns) to obtain the diffusion coefficients in those time intervals. 

From the slopes of different regions of MSD we obtain the distributions of the 
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diffusion coefficients, denoted by    ( ) (Fig.4.6. (d)). We observe that in free case, 

the distribution    
( )( ) is unimodal which indicates a single value of the diffusion 

coefficient. In presence of surface residues of ubiquitin,    
( )( ) shows broad width, 

signifying wide range of diffusion coefficients. For the single mutation,    
( )( ) and 

for the two mutation case,    
( )( ) exhibit bimodal distribution with two distinct 

diffusion coefficients. Mean diffusion coefficients obtained from the distributions for 

Zn
2+ 

are comparable to those estimated from the MSD data in Fig.4.5.  

4.3.4. Underlying mechanisms of heterogeneous diffusion: 

The existence of decaying tail in self-vHf along with the broad range of 

diffusivity arises due to strong caging of the ions in the vicinity of trapping residues. 

On the other hand, double Gaussian self-vHf along with two distinct value of 

diffusivity can be attributed to the weak transient localization of some of the ions. We 

relate heterogeneous dynamics to the underlying interaction between protein residues 

and ions. We generate the density plots of the ions around the known surface exposed 

acidic residues of the ubiquitin (   ( )) over the simulated trajectories. Fig.4.7.(a) 

shows that in unperturbed state of ubiquitin,    
( )( ) has a strong peak which 

indicates strong localization of the ions around the residues over sufficiently long 

amount of time. Whereas, for one mutation, the peak height of    
( )( ) is 

comparatively lower than that in native structure. Similarly,    
( )( ) in two mutations 

has lowest magnitude. This signifies that Zn
2+

 experiences less electrostatic 

interaction upon mutation, causing weaker localization of the ions around the residues 

with increasing mutations.  
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The connections between the dynamics of the ions and their interactions with 

the binding residues are observed in distance variation ( ( )) for the Zn
2+

 ions from 

the    atom of such residues over time   in each equilibrated trajectory. Some of the 

representative cases for one such residue, E16 in all three cases are shown in 

Figs.4.7.(b)-(f). We observe that, in case of unperturbed ubiquitin, the fluctuations in 

 ( )( ) (Fig.4.7.(b)) for the first Zn
2+

 (  = 1) remain negligible over the entire time, 

indicating that the ion is trapped. The third Zn
2+ 

(  = 3) undergoes large fluctuations 

along with higher magnitude. This indicates that the third ion is not trapped. The 

difference in strength of trapping for the same Zn
2+ 

(  = 1) ion is also observed in two 

different trajectories as indicated in Fig.4.7.(c). In case of one mutation,  ( )( ) in 

Fig.4.7.(d) shows that the first Zn
2+

 comes in proximity of E16, but the fluctuations 

are larger than the no mutation case. The third ion is not trapped here as well. 

Similarly, Fig.4.7.(e) shows that for double mutations, fluctuations in  ( )( ) for the 

first ion are larger in comparison with two previous cases, while third ion behaves 

identically. Trajectory dependent variations in fluctuations of distance for the same 

Zn
2+ 

(  = 1) ion is also observed (Fig.4.7.(f)) for double mutation. Although the 

trajectory dependent difference in distance variation is less prominent than that is 

observed for the unperturbed ubiquitin. These data indicate that for all three cases, 

Zn
2+

 ions possess two distinct type of mobility; some are getting closer to protein 

surface, while some are moving freely. However, as we mutate the residues; the 

strength of trapping is decreased; this is manifested in the corresponding diffusive 

dynamics of the ions.  
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Fig.4.7.(a)    ( ) plots indicating strong localization Zn
2+

 in unperturbed 

ubiquitin (blue), strength of trapping is gradually reduced in mutations, (green) 

one mutation and (red) two mutations. (b)  ( )( ) between Zn
2+ 

and E16 as a 

function of time  ; 1st Zn
2+

 (black) shows trapping, 2nd Zn
2+ 

(red) shows no such 

signature of trapping. (c)  ( )( ) between 1
st
 Zn

2+ 
and E16, showing variation in 

distance in different trajectories. (d)  ( )( ) between Zn
2+ 

and E16 as a function 

of time   showing decreasing in trapping propensity of the 1
st
 ion and (d)  ( )( ) 

indicates significat decrease in trapping of the 1
st
 Zn

2+ 
around E16. (f) Variation 

in  ( )( ) in two different trajectories. 

 

4.4. Discussions:  

Our studies suggest that metal ion binding sites over a protein surface can be 

identified from dynamical information of the ions. We use this to predict metal ion 
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binding propensity of a bacterial protein, namely STY3178
50-53

 of Salmonella Typhi, 

which infects typhoid in humans. This protein belongs to a class of uncharacterized 

protein called yfdX that occurs in many other virulent bacteria
50-53

. Recent studies
50-53

 

on STY3178 suggests that the protein may have connection to drug response of the 

bacteria. The model structure of the protein is shown in Fig.4.8. The protein has a net 

negative charge suggesting that the protein might interact with positively charged 

ligands. We consider dynamics of the most abundant metal ions, Mg
2+ 

and Ca
2+

 with 

~ 20 mM concentration in presence of STY3178 in cellular environment. The 

dynamic quantities are calculated by averaging over five different trajectories for both 

the ions. 

 

Fig.4.8. Model Structure of 

STY3178. 

 

 

We find that the diffusion profiles of Mg
2+

 ions are similar to those shown by 

the Zn
2+ 

in presence of mutated structures of ubiquitin. The        (     ) vs    

plots (Figs.4.9.(a)-(b)) represent that the self-vHf of Mg
2+

 exhibit double Gaussian 

dependence for     0.5, 1.0 ns. Similarly, the self-vHf for Ca
2+

,      (     )  

(Figs.4.9.(c)-(d)) indicate that the double Gaussian profile persists at     0.5 and 1.0 

ns. The normal Fickian diffusive nature for both the ions are retained at larger     

10.0 ns for larger     The corresponding fitting parameters (     ) for two 

differently mobile domains at different time intervals are tabulated in Table.4.2. This 
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indicates that although both the metal ions come in proximity of surface exposed 

residues of STY3178, they do not get trapped there.  

 

 

 

 

 

 

 

 

Fig.4.9.(a)        (     ) vs    plots at different time intervals; Deviation from 

normal diffusive profile of the ions in vicinity of STY3178 and the double 

Gaussian dependence is observed.     0.5 ns and (b)     1.0 ns, (c) Double 

Gaussian nature of      (    ) at    = 0.5 ns, (d) at     1.0 ns. 

 

Table.4.2. Fitting parameters for        (     ) and        (     ) vs    

plots at different time intervals.  

System    (ns) Fitting Range (  )       

Mg
2+

 in presence of STY3178 0.5 square 1.00-2.00 0.97 0.002 

Mg
2+

 in presence of STY3178 0.5 square 2.00-8.00 0.99 0.008 

Mg
2+

 in presence of STY3178 1.0 square 1.00-2.50 0.95 0.004 

Mg
2+

 in presence of STY3178 1.0 square 2.70-12.00 0.99 0.008 
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Ca
2+

 in presence of STY3178 0.5 square 1.00-2.00 0.94 0.002 

Ca
2+

 in presence of STY3178 0.5 square 2.15-10.00 0.99 0.008 

Ca
2+

 in presence of STY3178 1.0 square 1.00-5.00 0.98 0.008 

Ca
2+

 in presence of STY3178 1.0 square 5.00-11.00 0.99 0.007 

 

4.5. Conclusions:  

We observe that the strong electrostatic interactions exerted by the residues 

over a protein surface can trap metal ions for sufficiently large time. This leads to 

anomalous dynamic behavior of the trapped ions. Earlier studies also show that 

anomaly in dynamics may arise due to localization of different particles at different 

spatial points
25, 35, 38, 46

. The dynamical heterogeneity of a physiochemical system has 

been reported earlier in bio-molecular systems
40, 54

. However, we for the first time to 

the best of our knowledge show here an alternative approach based on scattering 

measurements
25-28

 for finding metal ion binding sites over a protein surface. Due to 

specific location of the binding pockets, the ligand attached protein may act as 

directed template for heterogeneous structure at nanometer length scale
55

. 
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CHAPTER 5 

Microscopic studies on flagellin-receptor complexes 

5.1. Introduction:  

In the previous two chapters, we address dynamics of fluctuations of different 

degrees of freedom to understand protein functionality. In this chapter, we focus on 

static aspects of conformational fluctuations of a bacterial protein. Our aim is to 

provide insight to conformational stability and functions of the protein. We consider a 

bacterial protein; flagellin which forms the major subunit of flagellum, an organelle of 

bacteria involved in several biological functions, like protein export, biofilm 

formation as well as adhesion and invasion
1-6

 to the host cells. When bacteria invade 

host cells, specific host cell surface receptor protein recognizes flagellin
7-10

 to trigger 

a chain of biochemical reactions within the host cell and the signal is transmitted from 

one cell to other. The pathway of these intracellular reactions is termed signal 

transduction cascades
11-18

, which finally leads to immunological responses
19

. The 

interaction between host cell receptor and flagellin, although of vital importance in 

immune-response of the host cells, is poorly understood till date. 

Depending on functions and organisms, flagellin proteins are named 

differently
1
. We consider in particular bacterial species invading human guts. 

Flagellin in bacteria Salmonella typhimurium is known as fliC. In case of Vibrio 

cholerae there are five distinct flagellin (flaA to flaE)
20

 among which flaC and flaD 

are most abundant
21

. Flagellin has a tendency to polymerize into filament, which 

evades crystallization. The only full length crystal structure
22-24

 of monomeric fliC is 

reported (1UCU.PDB), where terminal residues (D0 region) of the protein are 
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chopped off. The D0 region has been modeled using FEX-PLOR program
22, 23

. 

According to this structure
22-24

 the shape of the protein is similar to Greek upper case 

letter Γ with four linearly connected domains (D0-D4) as shown in Fig.5.1.(a). Out of 

these domains, D0 and D1 are conserved across organisms, whereas D2 and D3 

domains show diversity among organisms
 
and are known as hyper-variable (HPV) 

domain
1, 4

. Among the conserved domains, D1 region participates in different 

molecular interactions; while D0 is disordered and very little is known about this 

region.  

 

 

 

 

 

 

 

 

 

 

Fig.5.1.(a) Different domains of flagellin as indicated in cartoon representation of 

crystal structure of monomeric fliC. (b) Crystal structure of fliC-TLR5 complex. 

 

Toll like receptor, TLR5
25, 26

 is the host cell surface receptor protein that 

interacts with flagellin and forms a dimeric flagellin-TLR5 complex. The membrane 

bound protein TLR5 is characterized
27

 by a horse shoe shaped Leucine rich repeat 

extracellular domain (eLRR) and a conserved intracellular TIR region. The crystal 

structure (3V47.PDB) has been reported for eLRR region of TLR5 bound
16

 to D1 

D2 

D3 

D2

2 

eLRR 
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domain of fliC, along with the intact D2 region. The detection of pathogen associated 

molecular pattern of flagellin is done by the eLRR domain of TLR5 (Fig.5.1.(b)) by 

interacting with D1 region. The signal
28

 is activated by TIR domain that releases 

inflammatory responses. Recent immunological studies
29, 30

 on fliC reveal that 

deletion of D0 significantly reduces TLR5 activation in immunological response 

without affecting binding between flagellin and TLR5. The structural data of TLR5-

flaD is yet to be solved. However, immunological studies establish interaction 

between flaD and TLR5
31-33

. Although TLR5 is known
16

 to interact with the 

conserved domain of flagellin of different bacteria, discrepancy is reported in 

associated signaling pathway for fliC-TLR5 and flaD-TLR5 systems. In recent 

immunological experiment
34

 it is observed that in contrast to fliC-TLR5 complex, 

flaD-TLR5 induced activation is dependent on co-receptors, G protein coupled 

receptors (GPCRs)
35, 36

 in presence of lipid raft.  

The complete understanding of flagellin-TLR5 interaction for different 

bacterial organisms is crucial for therapeutic development. This leads us to perform 

in-silico model studies on flagellin, receptor protein and their complexes. We address 

the problem in two steps: First, we focus on relative stability of the D0 domain of free 

flagellin in two different media, water and membrane bilayer. Then we address 

relative stability of flagellin in presence of TLR5 with respect to the free states and 

correlate the observations to coreceptor bindings. 

 The relative stability of protein conformations can be understood from 

conformational thermodynamics
37, 38

, where the changes in thermodynamics free 

energy and entropy of a protein in a given conformation with respect to a reference 

conformation are computed from fluctuations of dihedral angles in the two states over 

simulated trajectories. If the changes in free energy and entropy of protein dihedrals in 
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a given conformation are positive in comparison to the reference conformation, then 

the protein is considered to be destabilized and disordered in the given conformation. 

In earlier studies
37, 38

, it is reported that the destabilized and disordered residues of a 

protein participate in further binding activity in order to reduce their free energy. In 

our study, we apply conformational thermodynamics to understand stability of 

flagellin both in free and TLR5 bound states. Only the conserved domains of flagellin 

are considered here.  

We have used experimentally available structure of fliC
22-24

 as initial structure 

for the simulation. In absence of structural information, we model the structure of 

conserved domains of flaD (Fig.5.2.(a)) using available crystal structure of fliC as a 

template and perform similar calculations. We perform 1.5 µs long all-atom MD 

simulations on two systems: (1) W system, where the entire conserved domains D0 

and D1 are kept in water (Fig.5.3.(a)) and (2) L system, where D0 region is immersed 

in a modeled dipalmitoyl phosphatidylcholine membrane bilayer (DPPC) while D1 is 

kept in aqueous medium as shown in Fig.5.3.(b). We generate histogram of dihedrals 

from equilibrated trajectories and compute changes in thermodynamics of 

conformational changes in L case compared to W case. We find that D0 of both fliC 

and flaD are thermodynamically and structurally more stable in bilayer than water. 

There are destabilized and disordered residues of D1 in both fliC and flaD. In case of 

fliC, these residues belong to the binding interface with TLR5 receptor. The nature of 

those destabilized residues is different in fliC and flaD. This suggests differences in 

binding mode by those two different bacterial flagellin proteins to TLR5. 
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Fig.5.2.(a). Model structure of flaD indicating structured conserved domains, 

HPV regions are unstructured. (b) Crystal structure of extracellular part of 

TLR5 (3V44. PDB). 
 

 

Fig.5.3. Snapshots of fliC simulated in different medium; (a) D0 and D1 are in 

water and (b) D0 in bilayer, D1 in water.  

       

     Next, we consider thermodynamics stability of fliC and flaD in presence of TLR5. 

We use the reported crystal structure of D1 domain of fliC bound to extracellular 

domain of TLR5
16

 as initial structure for simulation. Since no structural information is 

available for flaD-TlR5 complex, we propose a probable structure of flaD bound to 
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extracellular domain of TLR5. In both cases D0 is kept in DPPC and D1 along with 

extracellular domain of TLR5 are kept in water (Fig.5.4.(a)). We perform 1.0 µs long 

all-atom MD simulations for both fliC-TLR5 and flaD-TLR5. We also consider free 

extracellular domain of TLR5 in water from the 3V44.PDB as the initial structure for 

simulation (Fig.5.4.(b)). We generate distributions of dihedrals of TLR5 bound 

flagellin over the equilibrated trajectories and compute changes in thermodynamics 

free energy and entropy of flagellin with respect to its free state, where D0 is kept in 

bilayer and D1 remains in water. We find that the destabilized and disordered residues 

of fliC in presence of TLR5 are different than those in flaD. Thus, the residues of fliC 

and flaD in TLR5 bound states which might participate in further binding processes 

are not the same, although the binding between flagellin and TLR5 takes place in D1 

domain of flagellin in both the cases.  

 

 

 

 

 

 

 

Fig.5.4.(a) Snapshot of simulated structure of fliC-TLR5; D0 is kept in bilayer 

and D1 along with TLR5 are immersed in water. (b) Free TLR5 simulated in 

water.  

 

The rest of the chapter is organized as follows: The methods are explained in 

details in section 5.2. Section 5.3. contains all the results elaborately and the 

implications of our results. The conclusion is in section 5.4.  
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5.2. Methods:  

     The details of different systems, the protocol for MD simulation, docking for 

coreceptors are explained in this section. We also elaborate calculation of 

conformational thermodynamics. 

5.2.1. System preparations: 

We consider different systems to simulate in water and in bilayer. (I). Free 

flic, (II). Free flaD, (III). Free TLR5, (IV). fliC–TLR5 complex, (V). flaD-TLR5 

complex and (VI)  DPPC bilayer.  

(I) fliC: 

      We consider the crystal structure of monomeric fliC (1UCU.PDB)
22-24

 as 

an initial conformation in our calculation (Fig.5.1.(a)). The region from Q2 to Serine; 

S32, along with Alanine; A459 to R494 form helical D0 domain. The spoke region 

consists of S32 to A44 and E454 to A459 residues, which is a loop that connects D0 

with D1. D1 domain is rod shaped, containing α helices and one unique β hairpin 

motif. A44 to K179 form N terminal D1, followed by a C terminal side (Asparagine; 

N406 to E454). The residue from K179 to A401 makes hyper-variable domains, 

containing randomly oriented β hairpin motif, β sheet and helices. We exclude hyper-

variable regions of fliC in order to make our simulation less expansive and focus on 

the conserved domains only. 

(II) flaD: 

      We generate model structure of flaD from Homology modeling, using 

experimentally determined structure of fliC as a template
39

. The primary sequence of 

flaD
40

 in FASTA format has been submitted to Protein Model Portal Database
41

. We 

obtain modeled structure from four different servers including ImHCE, SWISS-
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MODEL
42

, IntFOLD2
43

 and Phyre2
44

. All these structures are minimized for 100000 

steps using NAMD
45

 as indicated in Fig.5.5. and the energetically favorable one is 

chosen for simulation. Final structure of flaD lacks of compact alpha helices in hyper-

variable domain and mostly remains structured for the conserved region as depicted in 

Fig.5.2.(a). In analogy with fliC, in case of flaD we also primarily focus on the 

structured conserved domains. D0 domain mainly comprises of helices and the 

residues from M2 to S34, K343 to G377 belong to the domain. Whereas G35 to A44 

along with K337 to A342 makes flexible spoke region. D1 consists of A45 to A179 

together with G285 to K337, forming helices and β sheets. 

 

 

 

 

 

 

 

 

Fig.5.5. Energy minimization for the various modeled structures of flaD obtained 

from different modeling software. 

 

 

(III) TLR5: 

     The full length crystal structure of TLR5 containing both the extracellular and the 

intracellular domains is not reported yet. The crystal structure (3V44.PDB) reveals 

that extracellular domain of TLR5 consists of Leucine rich repeat domain. Smooth 

curved β sheets of TLR5 (Fig.5.2.(b)) include residues from E64 to P464. Two anti-
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parallel β strands and thirteen parallel β strands form concave surface, whereas helices 

form the irregular surface of the receptor. 

(IV) fliC-TLR5 complex: 

    We consider crystal structure of fliC-TLR5 (3V47.PDB) as indicated in Fig.5.1.(b). 

The structure reveals that D1 domain interact with TLR5, forming primary interface. 

Interaction is mainly hydrophobic, salt bridges and H bonded are also observed.  

(V) flad-TLR5 complex: 

     As no crystal structure is available for flaD in presence of TLR5, we dock D1 

domain of our model flaD to extracellular crystal structure of TLR5 using 

HADDOCK
46

. We find the destabilized and disordered residues of D1 domain of flaD 

in bilayer with respect to its water embedded conformation. We chose these residues 

as active sites for TLR5 binding. For TLR5, we choose the known fliC binding 

residues as probable active sites. After rigid body energy minimization
46, 47

, MD 

based refinement process by HADDOK we get modeled structures. The top cluster is 

chosen on basis of Z-score
46, 47

. Details of docking result are tabulated in Table.5.1.  

Table.5.1. Docking study on flaD-TLR5 system. 

HADDOCK score -138.0 +/- 6.8 

Cluster size 23 

RMSD from the overall lowest-energy structure 0.7 +/- 0.4 

Van der Waals energy -81.6 +/- 8.3 

Electrostatic energy -420.4 +/- 54.0 

Desolvation energy 26.6 +/- 4.1 

Restraints violation energy 10.7 +/- 17.31 

Buried Surface Area 2697.2 +/- 47.7 

Z-Score -2.9 
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(VI) Preparation of bilayer: 

      We keep pre-equilibrated model structure of DPPC bilayer, obtained from 

GROMACS
48

 topology in XY plane and flagellin has been immersed in bilayer along 

z axis. We use inflateGRO methodology
49

 to pack lipid molecules around the 

embedded protein. We apply a very strong position restraining force on protein heavy 

atoms in order to keep it fixed during energy minimization. Following standard 

protocol of GROMACS
48

 we add topology of lipids
50

 to the force-field documents. 

We use “Berger Lipids” in our simulation. The “Berger Lipids” parameters are 

somewhat of a hybrid between GROMOS atom types and OPLS partial charges. 

Since the long alkane chains are poorly represented by GROMOS bonded parameters, 

a Ryckaert-Bellemans dihedral potential is used with a scaling factor of 0.125 is being 

applied to Leenard-Jones 1-4 interactions.  

5.2.2. MD simulations: 

     We prepare seven different systems to simulate for our analysis. (I). Free fliC, D0 

and D1 are immersed in water, (II). Free fliC, D0 is immersed in DPPC, D1 remains 

in water, (III). Free flaD, both D0 and D1 are kept in water, (IV). Free flaD, D0 is 

embedded in DPPC, D1 is in water, (V). Free TLR5 simulated in water, (VI). D0 of 

fliC is kept in DPPC, whereas D1 along with TLR5 are placed within water and (VII). 

D1 of flaD with TLR5 are simulated in water, D0 remains in DPPC. Details of 

simulation protocols are explained in this section. 

5.2.2.1. Simulation in water: 

       We use periodic boundary conditions, spc216 water model and GROMOS9353a6 

force field for simulations in GROMACS package
51

. Electro-neutrality is maintained 

by adding mono-valent ions Na
+
 and Cl

-
. Long ranged columbic interactions are 
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considered using PME approach
52

 and cut of range for van der Waals interactions is 

1nm. LINCS algorithm
53

 is used to constraint the bonds and leap-frog integration was 

used to perform simulation. We choose the entire conserved domain of fliC and 

immerse it in water. We then perform an energy minimization for first 10,000 steps 

using steepest descent algorithm, and then run 1.5 μs long isothermal isobaric (NPT) 

simulations with 1 fs time step to capture the protein dynamics. We use the similar 

protocol to simulate free flaD in aqueous environment. We ensure equilibration by 

RMSD plots as shown in Fig.5.6.(a). Calculations are performed over last 600 ns 

equilibrated trajectory files.        

     We also simulate free TLR5 in presence of aqueous environment (Fig.5.4.(b)). We 

run 1.0 μs long simulations and RMSD plot is shown in Fig.5.6.(b). Calculations are 

performed over last 500 ns equilibrated trajectory files. 

5.2.2.2. Simulations in presence of membrane: 

      For our simulation, we consider DPPC containing 392 number lipid molecules. 

We embed the D0 domain of fliC in bilayer, whereas D1 remains in water. Both the 

water and membrane along with the protein contain ~ 2,00,000 number of particles 

and are minimized for 10,000 steps in the absence of constraints. Following 

minimization, 1 ns of equilibration is carried out at a temperature of 323 K and 

pressure of 1 atm. We perform 1.5 μs simulation step using standard protocol for 

isothermal isobaric (NPT) simulation and GROMOS9353a6 force field. We follow 

the same process in order to simulate flaD in bilayer. RMSDs are shown in Fig.5.6.(c) 

and analysis is done from the equilibrated trajectory over last 600 ns for both the 

cases. 

      We consider the initial conformation of fliC-TLR5 complex from the available 

crystal structure. Next we immerse D0 domain of fliC in DPPC, whereas D1 and 
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TLR5 are kept in water and perform 1.0 μs simulation. We follow the same process in 

order to simulate flaD in presence of TLR5 in the vicinity of bilayer. RMSDs for the 

equilibrations are shown in Fig.5.6.(d) and analysis is done from the equilibrated 

trajectory over last 500 ns for both the complexes. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.6.(a) RMSD of free flagellin as a function of simulation time, where both 

D0 and D1 are kept in aqueous medium; Black; fliC, Red; flaD and (b) RMSD of 

free TLR5 in water. (c) RMSD of free flagellin while D0 is kept in bilayer and D1 

in water; color code is same as previous panel. (d) RMSD of fliC-TLR5 (black) 

and flaD-TLR5 complexes (red), D0 remains in bilayer, D1 along with TLR5 are 

kept in water. 

 

5.2.3. Conformational thermodynamics and HBM: 

      Conformational thermodynamics changes for proteins between two different 

conformations are estimated properly using the Histogram Based Method (HBM)
37, 38

. 

Equilibrium conformational changes in free energy is defined by   ( )  

       [
  ( )

  ( )
] where   ( ) and   ( ) signify peak value of normalized 



90 

 

probability distribution of protein dihedral   in bilayer and water respectively, 

and   , the Boltzmann's Constant. Conformational entropy change associated with a 

particular dihedral   at a temperature   is calculated using    ( )    (  ( )  

   ( )) where   ( ) and   ( ) can be obtained using Gibbs entropy 

formula  ( )      ∑   ( )     ( ), sum is taken over histogram bins.  

 

5.2.4. Docking of coreceptors with flagellin-TLR5 complexes:  

      We investigate the binding propensity between flagellin-TLR5 complexes with 

respect to different coreceptor proteins (A2A and VPAC1), involved in downstream 

signaling for immune responses. The extracellular loop (eCL2) of A2A
54, 55

, one of the 

coreceptor protein and extracellular domain (ecd) of VPAC1
56-58

, another coreceptor 

protein are reported to provide binding specificity to ligands. However, the crystal 

structure for extracellular loop of A2A, is not available due to poor electron density. 

Similarly, the full length crystal structure of VPAC1 is not available till date. So, we 

consider the sequences for extracellular loop of A2A and extracellular domain of 

VPAC1 and perform homology modeling using SWISS-MODEL
42

, IntFOLD2
43

 and 

Phyre2
44

. We minimized all the model structures as indicated in Figs.5.7.(a)-(b) and 

consider the one having lowest energy. Next, we dock them separately with fliC-

TLR5 and flaD-TLR5 complexes using HADDOCK
46

. The known binding hot spot 

residues of A2A and VPAC1 are chosen as active sites for docking with flagellin-

TLR5 complexes. The residues of flagellin showing significant amount of 

destabilization and disorder in presence of TLR5 are chosen as active sites to interact 

with these two coreceptors. Details of docking are shown in Table.5.2. 
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Fig.5.7. Energy minimization for the various modeled structures of extracellular 

part of GPCR proteins as obtained from different modeling software, (a) for A2A 

and (b) that of VPAC1. 
      

     As extracellular parts of the coreceptors are known to provide ligand specificity, 

we study the coreceptors bindings with flagellin-TLR5 complexes by performing 

small simulations ~ 100 ns in aqueous medium for eight different systems; (I). D1 

domain of fliC-TLR5 complex docked with ecL2 of A2A, (II). Extracellular domain 

of VPC1 docked with D1 region of fliC-TLR5, (III). D1 of flaD-TLR5 docked with 

ecL2 of A2A, (IV). Extracellular domain of VPC1 docked with D1 region of flaD-

TLR5 complex, (V). D1 domain of fliC bound to TLR5, (VI). D1 region of flaD 

bound to TLR5, (VII). Extracellular loop2 of free A2A and (VIII). Extracellular 

domain of free VPAC1. 

Table.5.2. Docking studies on flagellin-TLR5 and GPCRs. 

System fliC-TLR5 

-A2A 

fliC-TLR5- 

VPAC1 

fliC-TLR5- 

A2A 

fliC-TLR5- 

VPAC1 

HADDOCK 

score 

-50.8 +/- 9.2 -61.2 +/- 13.8 -59.5 +/- 2.7 -62.4 +/- 6.8 

Cluster size 25 10 8 12 

RMSD from 

the overall 

lowest-

energy 

 

 

1.3 +/- 0.8 

 

 

0.8 +/- 0.5 

 

 

6.3 +/- 0.7 

 

 

21.0 +/- 0.1 



92 

 

structure 

Van der 

Waals 

energy 

-44.3 +/- 5.7 -51.1 +/- 7.7 -34.6 +/- 9.2 -53.5 +/- 3.5 

Electrostatic 

energy 

-36.2 +/- 13.2 -71.8 +/- 43.2 -145.4 +/- 

47.6 

-105.2 +/- 

34.4 

Desolvation 

energy 

0.8 +/- 10.0 1.7 +/- 4.9 3.3 +/- 3.5 5.5 +/- 7.2 

Restraints 

violation 

energy 

0.1 +/- 0.13 25.7 +/- 14.04 9.3 +/- 16.05 66.0 +/- 26.70 

Buried 

Surface 

Area 

1186.8 +/- 

152.3 

1587.3 +/- 

135.4 

1259.5 +/- 

220.1 

1325.5 +/- 

79.5 

Z-Score -2.4 -1.9 -2.0 -2.0 

 

5.3. Results and discussions: 

     We address conformational stability of flagellin in different media, namely bilayer 

and water. Next, we show changes in conformational thermodynamics of flagellin-

TLR5 complexes with respect to corresponding free states. These results are given in 

the following subsections. 

5.3.1. Conformational stability of fliC: 

       The atomic model reported in the crystal structure of monomeric fliC
22-24

 shows 

that D0 domain of flagellin forms α coil structure, while D1 is rod shaped with three α 

helices and one unique β hairpin motif. We generate Ramachandran Plot
59

 (   ) of 

the residues of D0 (Fig.5.8.(a)), over the average structure obtained from simulated 

trajectories. We observe that the helical domain of D0 gets unwound in aqueous 

medium. Around 37 % residues lose compact secondary structural conformation in 

water with respect to initial helical structure and majority of these unstructured 



93 

 

residues are hydrophobic in nature. On the other hand, in bilayer embedded 

conformation, alpha helices of D0 remains almost intact, causing structural loss for 

only ~ 21 % residues. That indicates bilayer induced structural stability to D0 domain. 

There is no noticeable secondary structural change for D1 domain in two systems 

(Fig.5.8.(b)). 

 

 

 

 

 

Fig.5.8.     correlation plot of residues of fliC for water and bilayer 

embedded conformations obtained from average structure of equilibrated 

trajectory, Black; residues that are structured in water, Red; the unstructured 

ones in water, while Green; structured residues in bilayer and Blue; 

unstructured residues in bilayer. (a) D0 region and (b) for D1 domain. 

      

      We compare the dihedral distributions of various residues of the entire conserved 

fliC over equilibrated trajectories for membrane and water embedded conformations. 

We observe that residues of D0 show prominent changes in backbone as well as side 

chain dihedrals distributions as illustrated by few representative cases in Figs.5.9.(a)-

(b). We denote distribution of dihedral   of fliC in water as   
      

( ) and in bilayer 

as   
      

( ), where dihedral   belongs to residue  . We observe that (Fig.5.9.(a)) 

    
      

( ) exhibits bimodal distribution, whereas     
      

( ) is unimodal. Similarly 

     
      

(  ) (Fig.5.9.(b)) remains sharply peaked unimodal but      
      

(  ) shows flat 

distribution. Bimodal or multimodal distributions signify enhancement of dihedral 

flexibility where as sharp peaked distributions indicate loss of flexibility or 

compactness in secondary structure. Both A23 and L492 of fliC undergo loss of 
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secondary structures in water. But, in membrane they become more structured which 

leads to sharply peaked unimodal distribution. There are other residues (L17-A23 in 

N terminal D0 domain and R467-Q484 in C terminal D0 domain as indicated in 

Figs.5.10.(a)-(b)) which show complete loss of secondary structures in presence of 

water, showing significant changes in dihedral flexibility in bilayer than water. Thus 

D0 remains less flexible and more structured in membrane than water. 

 

 

 

 

 

 

 

 

 

Fig.5.9. Equilibrium responses for the residues of flagellin which show significant 

changes in presence of bilayer with respect to aqueous medium: (a) Dihedral 

distributions of fliC:     
      

( ) vs  ;     
      

( ) vs   and (b)      
      

(  ) vs   ; 

     
      

(  ) vs   . (c) Dihedral distributions of flaD:     
      

( ) vs  ;     
      

( ) 

vs   and (d)      
      

(  ) vs   ;      
      

(  ) vs   . 

 

 

 

 

 

 



95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.10. Residues of D0 domain of fliC, having loss of compact secondary 

structures and showing prominent changes in dihedral distributions in water 

than bilayer; (a) N terminal and (b) C terminal.  

       

      We account for changes in free energy and entropy of conformational changes of 

the L-system with respect to W-system from the distributions of the dihedral angles. 

The overall changes in conformational thermodynamics are obtained by adding all the 

dihedral contributions from all residues. The data are shown in Table.5.3. We observe 

that D0 remains energetically stabilized and ordered in membrane than water, (both 

      
   and         

   negative). We also report changes in free energy and entropy 

separately by backbone (      
     

,         
     

) and side chain dihedrals (      
     

, 

        
     

) respectively. We find that the stability and order are primarily dominated 

by side chain fluctuations. This large ordering indicates reduced flexibility of D0 in 

presence of bilayer. D1 domain also undergoes stabilization and order as indicated by 

changes in free energy (      
  ) and entropy (       

  ) in Table.5.3. Ordering as well 

as stability in free energy are governed by side chain fluctuations. Besides, the total 

changes in free energy for the entire conserved domain of fliC (      ) indicates that 

the side chain (      
  ) is the primary governing factor in providing stabilization to the 
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protein than backbone (      
  ). Similarly change in entropy for entire conserved 

domain (       ) shows major contributions of side chain dihedrals (       
  ). Thus, 

we find that bilayer induces larger conformational stability and order to each 

individual domains of fliC primarily via side chain.  

Table.5.3. Changes in free energy and entropy of different domains of fliC in 

presence of bilayer than water, indicating enhanced stability in bilayer. 

 

System Change in free energy 

(   ) 

Change in entropy 

(   ) 

D0 of fliC       
   ~ - 24.0         

   ~ - 113.2 

Backbone of D0 of fliC       
     

 ~ - 11.2         
     

 ~ - 35.3 

Side chain of D0 of fliC       
     

 ~ - 12.8         
     

 ~ - 77.9 

D1 of fliC       
   ~ - 31.5         

   ~ - 203.0 

Backbone of D1 of fliC       
     

 ~ 1.4         
     

 ~ 0.4 

Side chain of D1 of fliC       
     

 ~ - 32.9         
     

 ~ - 203.4 

(D0+D1) of fliC        ~ - 60.7         ~ - 64.5 

Backbone for (D0+D1) 

of fliC 

      
  ~ - 10.9 

 

        
   ~ - 9.8 

Side chain for fliC       
  ~ - 49.8         

   ~ - 54.7 

 

5.3.2. Conformational stability of flaD: 

      We repeat the same analysis for simulated trajectories on model structure of flaD. 

We find that both D0 and D1 domain are helical in secondary structural assignment in 

the model structure. We generate Ramachandran plot for D0 domain, both in water 

and bilayer embedded states (Fig.5.11.) to address structural stability of D0 domain in 
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different medium. We find that ~ 47.9% residues of D0 domain undergo loss of alpha 

helices in aqueous environment with respect to modeled initial conformation. 

However, in presence of bilayer only ~ 12.7% residues of D0 become unstructured.  

 

 

Fig.5.11.     correlation 

plot of D0 residues of modeled 

flaD for water and, Black; 

residues that are structured in 

water and Red; the 

unstructured ones in water, 

Green; structured residues in 

bilayer and Blue; unstructured 

residues in bilayer. 
           

 

     We generate dihedral distributions for different residues of D0 domain of flaD in 

presence of water and bilayer. We show here a few representative cases. We find that 

distribution of dihedral   of the residue M29 in water(    
      

( )) is unimodal with 

a broad width; however, that in bilayer (    
      

( )) becomes unimodal with a sharp 

strong peak, as depicted in Fig.5.9.(c). Similarly, flat multimodal distribution of L362, 

     
      

(  ) in Fig.5.9.(d) converts into sharply peaked unimodal      
      

(  ). In 

analogy with fliC, there are other residues like G20-R31 and E344-L375 

(Figs.5.12.(a)-(b)), which loss compact secondary structures in water and exhibit 

significant changes in dihedral distributions in bilayer. Thus, we find that bilayer 

induces structural stability to D0 domain. 
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Fig.5.12. Residues of D0 domain of flaD, having loss of compact secondary 

structures and showing prominent changes in dihedral distributions in water 

than bilayer; (a) N terminal and (b) C terminal. 
      

      The data for changes in conformational thermodynamics are shown in Table.5.4. 

Data for D0 (      
  ,         

  ) and D1 (      
  ,         

  ) indicate that both 

domains are more stabilized and ordered in bilayer than water. We observe that in 

analogy with fliC, the stabilization and order are due to side chain dihedrals 

(      
     

,       
     

,         
     

 and         
     

). Moreover, the entire conserved domain 

of flaD gains conformational stability (        ) and order (         ) in 

presence of bilayer owing to larger stability and ordering in side chain fluctuations.  
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Table.5.4. Changes in free energy and entropy of different domains of flaD in 

presence of bilayer than water, indicating enhanced stability in bilayer. 

 

System Change in free energy 

(   ) 

Change in entropy 

(   ) 

D0 of flaD       
   ~ - 20.4         

   ~ - 111.0 

Backbone of D0 of flaD       
     

 ~ - 8.2         
     

 ~ - 40.6 

Side chain of D0 of 

flaD 

      
     

 ~ - 12.2         
     

 ~ - 70.4 

D1 of flaD       
   ~ - 21.5         

   ~ - 183.6 

Backbone of D1 of flaD       
     

 ~ - 9.4         
     

 ~ - 24.7 

Side chain of D1 of 

flaD 

      
     

 ~ - 30.9         
     

 ~ - 208.3 

(D0+D1) of flaD        ~ - 45.9        ~ - 49.5 

Backbone for (D0+D1) 

of flaD 

      
  ~ - 0.3 

 

        
   ~ 0.5 

Side chain for (D0+D1) 

of flaD 

      
  ~ - 46.2         

   ~ - 50.0 

 

5.3.3. Binding interface between flagellin and TLR5 receptor: 

     Earlier studies
37, 38

 based on conformational thermodynamics suggest that the 

destabilized and disordered residues of a protein in a particular conformation are the 

functional ones in that state. We find that there are residues of D1 domain of fliC that 

are destabilized as well as disordered (thermodynamics data in Table.5.5.) as 

indicated in Fig.5.13.(a). We consider the available crystal structure of fliC-TLR5 

complex and compare the binding interface to these residues. We find residues like 
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E93, V96, S110, I111, A113, G440, N441 and T447 belong to TLR5 binding 

interface, as shown in Fig.5.13.(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.13.(a) Destabilized and disordered residues of fliC in presence of bilayer. 

(b) The destabilized and disordered residues of fliC that belong to known TLR5 

binding interface as compared with the crystal structure. (c) Destabilized and 

disordered residues of flaD in presence of bilayer. (d) Residues of flaD, belonging 

to TLR5 binding interface as observed in average structure generated over 

simulated trajectories of flaD-TLR5 complex. 

 

Table.5.5. Amount of destabilization (  ) and disorder (   ) of the residues of 

D1 domain of fliC in presence of bilayer with respect to water. 

 

 

   

 

 

 

 

 

 

 

Residue    (   )     (   ) 

E93 0.22 2.23 

V96 0.04 1.09 

S110 0.79 0.76 

I111 0.16 0.22 

A113 0.13 0.70 

G440 0.24 1.52 

N441 0.09 0.36 

T447 0.03 0.37 
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       In case of flaD, there are destabilized and disordered (Table.5.6.) residues in D1 

(Fig.5.13.(c)) domain. Majority of these residues are hydrophobic in nature, quite 

different than those of fliC. We perform MD simulation on model structure of flaD-

TLR5 complex using the GROMACS package
51

. We identify the residues like L48, 

N52, R53, T86, N87, Q90, E114, A118, S290, V291, S303, H304, A306, A310 and 

N113, which belong to the binding interface (Fig.5.13.(d)) based on the average 

simulated structure. We observe that the TLR5 binding interface of flaD is quite 

different sequence wise than that of fliC. 

The site-directed mutagenesis analysis of D0 reveals that the D0 domain is 

mainly responsible for pro-inflammatory responses
27

, associated with TLR5 binding. 

Moreover, from experiments based on protein fusion strategy
28

, it is proposed that D0 

has functional role in formation and activation of dimeric TLR5 receptor. It has been 

also suggested
28

 that D0 region might interact with TLR5 in the process of receptor 

dimerization. Since, the full length crystal structure of TLR5 along with 

transmembrane and intracellular domains
60

 is not reported yet, the microscopic basis 

of involvement of D0 region in TLR5 interaction is not understood. Our studies show 

that D0 of both fliC and flaD is conformationally more stable in bilayer than in water. 

Our observations suggest the possible role of D0 may be anchoring of flagellin in 

bilayer. This is likely to play a crucial role in maintaining orientation of D1 during 

interaction with TLR5.  
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Table.5.6. Amount of destabilization (  ) and disorder (   ) of the residues of 

D1 domain of flaD in presence of bilayer with respect to water. 

Residue    (   )     (   ) 

V63 0.94 0.97 

A64 1.02 1.86 

V65 0.36 1.90 

A68 0.31 1.99 

G71 0.34 0.81 

G80 0.26 0.42 

K106 0.43 0.76 

S107 0.91 1.04 

I126 0.41 1.03 

A127 0.65 1.56 

F132 0.29 1.49 

G133 0.26 2.16 

G134 0.22 1.13 

S290 0.26 1.83 

I294 0.39 2.11 

A297 0.45 1.16 

V301 0.88 1.01 

H317 0.37 0.46 

 

5.3.4. Conformational stability of flagellin-TLR5 complexes: 

      We generate distributions of dihedral   for the  th residue of fliC in presence of 

TLR5 (  
      

( )) over simulated trajectories and compare to those in the free state 
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(  
      

( )). Some representative cases are shown in Figs.5.14.(a)-(b). We find that 

both      
      

( ) and      
      

(  ) are unimodal. However, in presence of TLR5, 

     
      

( ) along with      
      

(  ) exhibit bimodal distributions. This signifies that 

both Q146 and L167 gain flexibility in complex form. There are also residues of fliC 

which do not show significant changes in dihedral distribution in presence of TLR5. 

One such representative case is T116, where both       
      

( ) and      
      

( ) remain 

unimodal as indicated in Fig.5.14.(c). 

     Similarly, we calculate histogram for dihedral   for the  th residues of TLR5 in 

presence of fliC (  
         

( )) as well as in its free state (  
      

( )). We observe 

that for some residues dihedrals show prominent changes in their distributions. 

Figs.5.15.(a)-(b) signify that      
      ( ) is bimodal in free state, whereas it loses 

flexibility and becomes unimodal (     
         ( )) in the complex. In analogy with 

T113, bimodal nature of      
      (  ) converts into unimodal      

         (  ). 

However, for some residues there are no noticeable changes in dihedral distributions 

as represented in Fig.5.15.(c) (unimodal     
      ( ) and     

         ( )).  

     Next, we calculate changes in conformational free energy (        ) and entropy 

(         ) of fliC in presence of TLR5 with respect to the free state (Table.5.7.). We 

observe that fliC remains energetically destabilized as well as entropically disordered 

in the complex. Major contribution in destabilization and disorder comes from 

backbone. We find that for fliC-TLR5 complex, the residues of D1 domain like Q146 

and L167 (Fig.5.16.(a)), have significant amount of destabilization ( > 1.0    ) and 

disorder ( > 1.0    ) in presence of TLR5. But, no residues of D0 show such 

significant destabilization in fliC-TLR5 system. We also calculate changes in 

conformational free energy (      
    ) and entropy (        

    ) of TLR5 in presence of 
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fliC with respect to the free state. TLR5 is energetically stabilized and entropically 

ordered (Table.5.7.) in the complex primarily due to side chain fluctuations. We 

estimate the changes in free energy (           ) and entropy (            ) of the 

fliC-TLR5 complex by adding the contributions from fliC and TLR5. We observe that 

the complex is overall stabilized and ordered compared to the free state of fliC. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Fig.5.14. Equilibrium responses for the residues of flagellin in presence of TLR5 

(red) with respect TLR5 free state (black): (a) Dihedral distributions of fliC: 

     
      

( ) vs  ;      
      

( ) vs   and (b)      
      

(  ) vs   ;      
      

(  ) vs    

showing significant changes in presence of TLR5. (c)      
      

( ) vs   and 

     
      

( ) vs   do not exhibit noticeable changes. (d) Changes in dihedral 

distributions of flaD:     
      

( ) vs  ;     
      

( ) vs   and (e)      
      

(  ) vs   ; 

     
      

(  ) vs   . (f)     
      

( ) vs   and     
      

( ) vs   remain almost 

similar.  
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Fig.5.15. Equilibrium responses for the residues of TLR5 in presence of flagellin 

(red) with respect its free state (black): (a)      
         

( ) vs  ;      
      

( ) vs   

and (b)      
         

(  ) vs   ;      
      

(  )  vs    showing significant changes in 

presence of fliC. (c)     
         

( ) vs   and     
      

( )vs   do not exhibit 

noticeable changes. (d)     
         

( ) vs  ;     
      

( ) vs   and (e) 

     
         

(  ) vs   ;      
      

(  )  vs    indicating changes in distributions. (f) 

    
         

( ) vs   and     
      

( ) vs   remain almost similar. 
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Table.5.7. Changes in free energy and entropy of fliC, TLR5 and the fliC-TLR5 

complex. 

 

System Change in free energy (   ) Change in entropy (   ) 

fliC          ~ 11.2           ~ 57.7 

Backbone of 

fliC 

        
   ~ 7.9           

   ~ 34.8 

Side chain of 

fliC 

        
   ~ 3.3           

   ~ 22.9 

TLR5       
     ~ - 20.2        

     ~ - 145.4 

Backbone of 

TLR5 

      
        ~ 27.8 

 

       
       

 ~ 69.3 

Side chain of 

TLR5 

      
        ~ - 48.0        

       
 ~ - 214.7 

fliC-TLR5 

complex 

            ~ - 9.0              ~ - 87.7 

 

            
 

Fig.5.16.(a) Destabilized and disordered residues of fliC in presence of TLR5 and 

those of (b) flaD as obtained from conformational thermodynamics. 

           

      We further address distributions of dihedral   for the  th residues of flaD in TLR5 

bound form (  
      

( )) as well as in the free state (  
      

( )). We have shown 
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some representative cases in Figs.5.14.(d)-(f). We observe that     
      

( ) exhibits 

unimodal distribution in TLR5 free state; whereas in presence of TLR5,     
      

( ) 

becomes bimodal. Similarly,      
      

(  ) is unimodal, but it shows uniform flat 

distribution in presence of TLR5. These observations indicate that those residues gain 

flexibility in presence of TLR5. But, there are some residues like T27 which do not 

exhibit changes in dihedral distribution, both     
      

( ) and     
      

( ) are almost 

identical (Fig.5.14.(f)).  

     For TLR5, dihedral distributions (Figs.5.15.(d)-(e)) indicate that both     
      

( ) 

and      
      

(  ) are bimodal in absence of flaD. However in presence of flaD, they 

become less flexible as indicated by the unimodal profile of     
         

( ) and 

     
         

(  ). Nevertheless, the unimodal nature of     
         

( ) and     
      

( ) 

(Fig.5.15.(f)) signify that V27 does not show any changes in presence of flaD. 

     The data for changes in conformational free energy (        ) and entropy 

(         ) of flaD in presence of TLR5 indicate that flaD is destabilized as well as 

disordered in the complex (Table.5.8.). Backbone is mainly responsible for 

destabilization whereas side chain contributes to disorder. However, unlike fliC-TLR5 

system, in case of flaD-TLR5 there are several residues of D1 domain like Q49, R91, 

R93, L123 and E307 that are strongly destabilized (    > 1.0    ) and disordered 

(     > 1.0    ) (Fig.5.16.(b)) with respect to free flaD. We also identify that among 

such residues, there are two residues like Q367 and A368 that belong to D0. The 

amount of destabilization and disorder of such residues for both fliC and flaD are 

shown in Table.5.9. Next we calculate changes in conformational free energy 

(      
    ) and entropy (        

    ) of TLR5 in presence of flaD with respect to the free 

state. We find that TLR5 remains stabilized and ordered primarily due to side chain. 
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The changes in overall free energy (           ) and entropy (            ) of 

flaD-TLR5 complex show that the overall complex is stabilized and ordered with 

respect to the free state of flaD. 

Table.5.8. Changes in free energy and entropy of flaD, TLR5 and the flaD-TLR5 

complex. 

 

System Change in free energy 

(   ) 

Change in entropy 

(   ) 

flaD          ~ 17.0           ~ 81.5 

Backbone of flaD         
   ~ 8.6           

   ~ 32.5 

Side chain of flaD         
   ~ 8.4           

   ~ 49.0 

TLR5       
     ~ - 40.3        

     ~ - 206.4 

Backbone of TLR5       
        ~ 24.5        

       
 ~ 68.6 

Side chain of TLR5       
        ~ - 64.8        

       
 ~ - 275.0 

flaD-TLR5 complex             ~ - 23.3              ~ - 193.5 

 

Table.5.9. Significant amount of destabilization (          ) and disorder 

(            ) of the residues of fliC and flaD in presence of TLR5 with 

respect to their free states. 

 

Flagellin Residue    (   )     (   ) 

fliC Q146 1.02 1.97 

fliC L167 1.42 1.51 

flaD Q49 1.12 3.24 

flaD R91 1.58 4.29 

flaD R93 1.50 5.94 

flaD L123 1.17 3.58 
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flaD E307 1.30 1.81 

flaD Q367 1.19 7.33 

flaD A368 1.05 1.73 

 

5.3.5. Coreceptor binding:            

     Often in host cell, intracellular response upon pathogenic recognition is 

activated in presence of series of coreceptor GPCR proteins. The immunological 

experiment
34

 indicate that fliC-TLR5 does not involve GPCR. However, the immune 

response for flaD-TLR5 system is GPCR dependent. Specifically, both the A2A 

adenosine receptor
54, 55

 and VPAC1
56-58

 are found to contribute to the response in 

flaD-TLR5 interaction. 

Ligand bound crystal structure of A2A along with mutational studies
54, 55

 

reveal that the residues (L167, F168 and E169) of second extracellular loop (ecL2) are 

known to provide ligand binding specificity associated with intracellular response. On 

the other hand in case of VPAC1
56-58

, the large conserved extracellular domain (ecd) 

is responsible for ligand binding. Mutagenesis and docking studies
56-58

 show that 

D107, G116, Cysteine; C122 and K127 of extracellular domain are the key residues 

that are important for ligand binding.  

     In our conformational thermodynamics analysis of flagellin-TLR5 complex, we 

find that there one hydrophobic and one polar resides in D1 region of fliC are 

destabilized after binding with TLR5. They are more prone to participate 

hydrophobicity mediated function and polar residue might participate in weak 

electrostatic interactions. However, for flaD the destabilized residues in D1 domain 

are acidic, basic, polar and hydrophobic as well. So, they are highly probable to 

participate in binding govern by strong electrostatic attractions. We find that for A2A 
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receptor, the known binding residues are mainly hydrophobic, whereas for VPAC1 

the residues are hydrophilic in nature. These observations lead us to perform docking 

of A2A and VPAC1 to D1 region of flagellin.  

     In the absence of crystal structure, we build up mode for the ligand specific 

domain of A2A and VPAC1 coreceptors using 4UG2.PDB and 2X57.PDB as the 

templates respectively. The model structure along with the binding hot spot residues 

of A2A and VPAC1 are shown in Figs.5.17.(a)-(b). Model structure of A2A consists 

of small helix and loop region, whereas for VPAC1 it is primarily helical along with β 

sheets. We dock these models to flagellin-receptor complex. The docked complexes 

for fliC-TLR5-A2A, fliC-TLR5-VPAC1, flaD-TLR5-A2A along with flaD-TLR5-

VPAC1 are shown in Figs.5.18.(a)-(d). 

 

 

 

 

 

 

 

Fig.5.17. Binding hotspots for GPCRs shown in modeled structures; (a) A2A and 

(b) VPAC1.  
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Fig.5.18. Docked structures of the flagellin-receptor-coreceptor; (a) fliC-TLR5-

A2A, (b) fliC-TLR5-VPAC1, (c) flaD-TLR5-A2A and that for (b) flaD-TLR5-

VPAC1 complexes.  
     

       Our thermodynamics data show that the receptor protein TLR5 remains stabilized 

and ordered in the complexes. This leads us to compute changes in free energy and 

entropy for the flagellin-coreceptor complexes. We calculate changes in free 

energy (     
    

) and entropy (      
    

) of A2A in presence of fliC-TLR5 complex as 

well as in flaD-TLR5 system (     
    

       
    

 ) with respect to its free state. 

Similarly, we focus on thermodynamic changes for fliC (      
    and        

   ) and 

flaD (      
    and        

   ) in presence of A2A with respect to the coreceptor free 

state. We follow the same process for VPAC1 and estimate thermodynamic changes 

of the coreceptor in presence of both fliC and flaD respectively 
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by        
    

         
    

        
    

         
    

. The thermodynamic stability and order of 

both the flagellins after interacting with VPAC1 (      
     ,        

            
     , 

       
     ) are also shown in Table.5.10. The thermodynamic data suggest that fliC-

A2A as well as flaD-A2A complexes are stabilized. However, in case of VPAC1 only 

flaD-VPAC1 shows stability. Thus flaD can form stable complexes both with A2A 

and VPAC1, while fliC can form complex with A2A alone.  

Table.5.10. Changes in free energy and entropy of fliC and flaD in presence of 

coreceptors. 

 

System Change in free energy 

(   ) 

Change in entropy 

(   ) 

fliC in presence of A2A      
    
 ~ - 19.0       

    
 ~ - 11.4 

A2A in presence of fliC       
    ~ - 4.0        

    ~ - 49.8 

fliC in presence of 

VPAC1 

       
    

~ -1.0         
    

~ 75.8 

VPAC1 in presence of 

fliC 

      
      ~ 9.6        

      ~ 29.9 

flaD in presence of A2A      
    

 ~ - 12.3       
    

 ~ - 110.0 

A2A in presence of flaD       
    ~ - 6.1        

    ~ - 34.3 

flaD in presence of 

VPAC1 

       
    

~ - 11.2         
    

~ - 7.6 

VPAC1 in presence of 

flaD 

      
      ~ - 2.7        

      ~ - 21.3 
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5.4. Conclusions: 

To summarize, we find that bilayer induces thermodynamic and structural 

stability to the disordered D0 domain of flagellin. The TLR5 binding interfaces with 

D1 region for fliC and flaD are not identical. However, both the flagellin-receptor 

complex is stabilized. We also observe coreceptors like A2A and VPAC1 can interact 

with flaD-TLR5. The microscopic details for the interaction of flagellin with receptor 

and coreceptors might be helpful in pharmaceutical applications. 
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CHAPTER 6 

Model studies on aggregation of misfolded proteins 

6.1. Introduction:  

We observe that temporal correlations between long distant residues of a 

protein, electrostatically heterogeneous surface as well as conformational 

thermodynamics of the protein in different medium play vital role in governing 

protein functions. Proteins are amphiphilic
1
 bio-molecules, having both hydrophobic 

and hydrophilic parts. The basic building blocks of proteins are amino acids
2-4

 

(residues) which have different side chains, giving hydrophobic or hydrophilic 

character. In general, functional proteins expose their hydrophilic groups to aqueous 

environment
5
, while hydrophobic parts remain buried

6
 in their native folded 

conformations. However, sometimes due to mutation, physiological stress and 

changes in physio-chemical conditions proteins undergo deviations from native 

structures, exposing the hydrophobic parts to water
7, 8

. These misfolded proteins form 

supra-molecular assembly structures like other amphiphilic complex assembly of nm 

size
9-12

. In this chapter, we primarily discuss how the different competing interactions 

lead formation of such supra-molecules using a model system. 

These complex morphologies of misfolded proteins often assemble into nano-

tubes, nano-vesicles, nano-spheres, nano-fibers and nano-doughnut structures
13

. They 

are widely used in bio-medical applications
14, 15

 due to their inherent biocompatibility 

and biodegradability
16

. However, above a critical aggregation concentration
14

 peptide 

amphiphiles can lead to numerous neurodegenerative disorders
7, 17

. The potency of 

toxicity
18, 19 

of these misfolded proteins depends on size of the aggregated structures. 
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Thus, detail knowledge on the stability of nm sized clusters of misfolded proteins has 

large implications to understand diseases as well as to design biocompatible materials. 

 Most common end product of protein aggregation is the extended β-amyloid 

fibril
20, 21

 having β sheets parallel to fibril axis. Dynamic light scattering and 

fluorescence correlation spectroscopy (FCS) measurements
18, 19

 reveal that three 

different major isoforms of amyloid assembly exist in aggregation pathway: 

monomers, soluble intermediate oligomers and the insoluble long β-sheet like 

aggregated fibrils. Neither the larger aggregated structure of β-amyloid nor the 

monomer are responsible for toxicity
18

, rather smaller oligomers
22, 23

 of 3-10 nm 

length scale are the main toxic species of β-amyloid. Earlier experimental studies
24

 

indicate that the hydrophobic parts of the proteins are largely responsible for amyloid 

formation. However, it also depends on salt concentration and pH of the medium 

which indicates the role of charged interactions
24, 25

 as well. The experimental 

observations suggest that aggregation of misfolded protein takes place via competing 

interactions, namely, that between hydrophobic sites and that of electrostatic origin.  

 Theoretical studies elucidating the role of the competitive interactions in 

stabilizing nm scale structures are far from complete. Protein aggregations are 

associated with slow time and large length scales. Theoretical understanding of 

mechanism behind aggregation from all atom MD simulation in explicit solvent 

model is involved
26-29

 due to large number of molecules. Hence, coarse grained 

models
26-29

 are employed to gain mechanistic insights on protein aggregation. Patchy 

colloids
30-33

 with anisotropy in size, shape or charge density of their interacting 

surface to account for variations over protein surface chemistry, are often chosen to 

model protein assembly. A patchy spherocylinder
34

 having two hemispheres with 

anisotropic hard core repulsion and hydrophobic stripes running through the length is 
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used to study potential dependent morphology of aggregation
34

. The model 

emphasizes that the different widths of non-uniformly distributed hydrophobic surface 

patches lead formation of aggregates with wide variety of shapes. However, effect of 

electrostatic interaction in governing this assembly is not included in this model. 

Moreover, it is hard to generalize
35

 the model for broad class of proteins. Small angle 

neutron scattering experiment on lysozyme aggregates
36

 has been explained using 

short ranged attraction and long range repulsion. Such model has been widely used
37, 

38
 to study colloidal aggregation. The short ranged attraction due to depletion of 

solvent particles between two solutes is known as Asakura-Oosawa model
39

, but this 

does not consider repulsion of solvent by the hydrophobic solute surface. A charged-

colloid system
24

 with hydrophobic potential modeled by step function extended up to 

radius of the particle along with screened electrostatic interaction has been proposed 

to understand stability of amyloid. However, it is not clear how the competition of 

exposed hydrophobic surface of misfolded proteins and the charge interaction has 

been taken into account in these models.  

 In the present work, we include both interactions into account in a model 

system. We take the surface of a spherical particle repelling the solvent molecules to 

mimic the solvent exposed hydrophobic residues and place charge at the center of the 

spheres to mimic the buried hydrophilic portion of the protein. The schematic diagram 

of a pair of such particles is shown in Fig.6.1.  
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Fig.6.1. Schematic 

representation for the model 

system with particles, having 

solvophobic surface along with 

charge   at core. The radius of 

the particle is  . The smaller 

circles represent solvent 

molecules repelled away from 

annular region between   and 

  . 

 

 

There have been numerous studies
40-42

 on solvophobic solutes, the solute 

surface repelling solvent molecules as a model for hydrophobic solutes. These studies 

show that interaction between two solvophobic solutes is given by a harmonic 

potential with characteristic spring constant   which depends on the thermodynamic 

condition of the solvent and strength of repulsion by the solute surface
43

.  The 

electrostatic interaction between charges at the centers is taken to be screened with 

Debye screening length
44

 ( )   by the counter charges and salt ions. One major 

reason for choosing such model is its simplicity so that analytical treatment is 

possible. Moreover, surface modification allows synthesizing colloids having various 

degrees of hydrophobicity with hydrophilic core inside, like ligand capped metal nano 

particles
45

. We study the system by MC simulations and mean field analysis. Our 

observations clearly establish competition between solvophobic force mediated 

attraction and electrostatic repulsion. The particles form finite sized clusters in the 

presence of electrostatic interaction. The threshold value of   to form large aggregates 

show   ~       dependence which is qualitatively supported by our mean field 

analysis. 
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6.2. Methods:  

We consider a model system having electrostatic and hydrophobicity mediated 

potential. The details of the potential function, simulation protocol and analysis are 

elaborated in this section. 

6.2.1. Details of potential function: 

In earlier study
43

 it is shown that the solute-solvent repulsion generates a gas 

bubble of radius    (shown by dashed line in Fig.6.1.) around the solvophobic 

particle of radius  , where      . When two such solvophobic particles come in 

proximity, a pressure difference is created at the overlapping zone of the bubbles 

surrounding the solutes
43

, which leads to a harmonic attractive force between two 

solutes of inter-surface separation    For       , the interaction potential,    ( )  

   , (   (   ⁄ )  )        -, where   (      ) governs strength of 

interaction. Here,   is surface tension of the solvent. We take screened electrostatic 

repulsion between the core charges by standard Derjaguin–Landau–Verwey–

Overbeek (DLVO) potential
44

,   ( )   (   )           ⁄ . Here    

    (    ⁄ ),   is inter-particle separation,   is electronic charge,   number of 

charges present in a particle,   inverse of the Debye screening length,   dielectric 

constant of solvent and    is electric permittivity of air. 

   (∑   
    

 
         ⁄ )  ⁄ ,    being the valence of each type of  th ion present 

in the solution, including contribution from salt as well as from the macro-ions, and 

   the Boltzmann constant. Similarly,    the ionic concentration in mol/L, ∑   
     

gives ionic strength ( ) and    is Avogadro’s Number.  
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6.2.2. Details of MC simulation: 

The simulations are performed in a cubic box of dimension    = 14.0 nm 

containing    1000 model particles with the periodic boundary conditions in all 

three directions. We consider particle diameter   (= 1.0 nm) as the length unit and 

energy unit     at room temperature (  = 300  ). We consider surface tension 

  (dimensionless) ~ 0.7 and    ⁄    1.27 as per earlier studies
43

. Using values of   

and   , we obtain that    =       ⁄  = 10.0. We consider minimum value of 

       = 2.0 corresponding to salt concentration in cell
46, 47

. This minimum value of 

   is also chosen in such a way that    ⁄      ⁄  to minimize the finite size effects in 

simulations. We take a fixed value for   (= 22) that is comparable to the number of 

charged residues of a protein and vary   which is similar to vary salt concentration in 

experiments for a given charge at the centre of the colloidal particle. 

We update particle position according to Metropolis algorithm
48

. First 

particles are displaced randomly and then if the change in potential energy in new 

configuration is less than the old one, then the particles are updated to the new 

positions. Similarly, the acceptance of the new position is also ensured 

probabilistically by computing ratio of Maxwell-Boltzmann probability distribution 

functions of new state with respect to the old one. If the ratio is greater than a random 

number generated between 0 to 1, then also particles position are updated. After 

equilibration (~ 30,000 MC step) different quantities are averaged for last 70,000 

configurations
48

.  

6.2.3. Cluster-size analysis: 

In order to identify clusters formed by the particles, we arbitrarily choose  th 

particle and then calculate distance     for all of  th particles (    ) with respect to 



123 

 

 th particle over equilibrium trajectories. If     is less than a certain distance (    

    ) then these  th particles are considered to belong to the same cluster as the  th48
 

particle and total number of particles belong to that particular cluster gives cluster 

size,   . The process is repeated for other particles.  

6.2.4. Computation of radial distribution functions: 

We compute the radial distributions
48

  ( ) of the particles using the standard 

formula,  ( )    
 (    )

        
 . Here   is the separation between two particles,   is 

density of our system and  (    ) denotes number of neighbor particles between a 

spherical shell of radius   and       around the central particle. The angular bracket 

defines ensemble average over equilibrium configurations. 

6.2.5. Mean field analytical treatment: 

We use mean field treatment
49

 to understand the region of stability of 

aggregation structure in our system analytically (Details in Appendix I, Chapter 6). 

We consider to this end a low wave vector expansion of the direct correlation function 

of the particles and find the root of the quadratic term.  

6.3. Results:  

Here, we explain the details analysis on how the strength of electrostatic and 

solvophobicity mediated attraction in our model potential affect formation of finite 

size as well as aggregated structure. Similarly, the pair correlation function is also 

represented in details. 
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6.3.1. Cluster-size analysis: 

 Let us first consider the cluster size distribution. We generate distribution of 

cluster size  (  ), over equilibrium configurations and compute the mean value (  ̅). 

We observe that in presence of solvophobicity mediated attraction only, particles tend 

to form aggregated structure, along with   ̅ ~   (data not shown). This is analogous to 

hydrophobic collapse
50, 51

 known in the literature. Next we consider the effect of the 

electrostatic repulsion which competes with the solvophobic attraction. We 

generate  (  ) for different values of    over a range of   . Some representative 

cases are shown in Figs.6.2.(a)-(c). We find that at    = 3.0, for low    (= 2.0) or at 

low salt concentration  (  ) is unimodal (Fig.6.2.(a)) and   ̅ ~ 2.0, indicating 

formation of finite size clusters. If we further increase screening then at    = 6.0, 

 (  ) (Fig.6.2.(b)) is bimodal which signifies the increasing tendency of aggregation. 

Finally, at    = 13.0,  (  ) is primarily unimodal (Fig.6.2.(c)) along with   ̅ =  .  

Thus, we find that for a fixed value of   , above a particular threshold value of 

   (   ),   ̅ ~  , indicating aggregation. Below that     particles form finite size 

stable clusters. Thus, finite size clusters are stabilized by electrostatic interaction. For 

large salt concentration, where the electrostatic interaction is strongly screened, 

system forms aggregates. The finite clusters are few times particles diameter. Thus, 

they are of a few nm size for nano particles systems. 
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Fig.6.2. Probability distribution 

of cluster size of the model 

system, in presence of a fixed 

solvophobicity mediated 

attraction (   = 3.0) and 

different   . (a) Particles form 

finite size cluster for    = 2.0. 

(b) Coexisting small clusters 

and aggregation for    = 6.0. (c) 

Large aggregation at    = 13.0. 

 

 

 

 

 

 

 

 

In order to extract dependence of    over   we generate   ̅ with increasing 

values of    for different   . The      vs      plot in Fig.6.3.(a) shows the 

aggregation lines. Above the lines the particles form large aggregates, while below it 

the particles form finite clusters. For lower   , we find from the slope of the log-log 

plot that     (   
 )    . However, for larger   , the dependence is much weaker, 
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    (   
 )    . This is suggestive of the regime dominated by the solvophobicity 

mediated harmonic potential. 

 

Fig.6.3.(a) Phase diagram in    and    in plane showing finite size cluster and 

large aggregated structure. The solid line shows     (   
 )     dependence, while 

dashed line represents     (   
 )     for aggregation threshold. (b) Pair 

correlation function,  ( ) vs   plot for different values of    and   , Black:    = 

10.0,    = 2.0 while Gray:    = 3.0,    = 2.0. and (c) Black:    = 10.0,    = 10.0 

where as Gray:    = 3.0,    = 13.0. (d)     
̅̅ ̅ vs      plot to show cluster size 

variation with ionic strength.  

 

6.3.2. Finite correlation in system: 

We also analyze the structural correlations in our system using pair correlation 

function
49

 ( ( )). This is the probability distribution of finding a neighbor atom 

around a central atom within a spherical shell of radii   and      . We have shown 
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some representative cases of  ( ) for different values of    and    in Figs.6.3.(b) and 

(c), which indicate that correlations in our systems remain finite.  

6.3.3. Analysis from mean field treatment: 

Mean field theory
52

 is used to approximate many body interaction of a system 

by an effective interaction, such that each molecule feels a potential due to a mean 

field generated by other molecules. Thus, it is an effective mathematical framework to 

reduce many body problems into one body problem. If the system has negligible 

spatial fluctuations, then mean field treatment is quite useful. We account for the 

stability of clusters over aggregations by a simple mean field theory both for 

electrostatic repulsion and solvophobicity mediated attractions.  

Local order or correlation of a liquid can be probed by wave vector 

( ) dependent static structure factor  ( ) using light scattering experiment
53

, which is 

Fourier transform of pair correlation function
49 ( ( )). As per Ornstein Zernike 

equation, direct correlation function
49

 ( ( )) between a pair of particles separated by 

a distance   at a given density   depends on all other indirect interactions mediated by 

a third particle situated at   . The equation is  ( )    ( )   ∫    (    ) (  ), 

where  ( )   ( )    gives the total correlation between the  pair of particles 

separated by a  . By performing Fourier transform of the equation one can find, 

 ( )    ( ) (     ( ))⁄   In theoretical calculation of liquid system, since 

 ( )     ( )  it can be related to  ( ),   (     ( ))⁄ . In general,  ( ) has 

peak around ordering wave vector        . Clustering is represented by peak at 

low     , while for aggregation the peak shifts to     limit. The peak of  ( ) 

corresponds to that of  ( ) as well. At low density, the mean field approximation
54

 

represents that  ( )      ( ), where        ⁄  and  ( ) interaction potential. 
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For the mean field approximation for our system we consider that  ( )  

        ( )         ( ). Here         ( ) is Fourier transform of direct correlation 

function for DLVO potential and       ( ) is that for solvophobic term.  This is valid 

for long-ranged electrostatic potential, namely low  . Since, the solvophobicity 

mediated term operates till       , we use mean field treatment for this term. By 

transforming the electrostatic DLVO interaction into Fourier space we get that at long 

wavelength limit (   ),         ( )   
    √  

  
(      ⁄ ). Here,   

 (        ,    - ⁄ )       ⁄ , the pre-factor of DLVO potential On the other 

hand, by performing Fourier transform in the same wave vector range on       ( ), 

      ( )  √   (    )⁄ ,*
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]+-  where (  

  ⁄    )   . In     limit,  ( )      

    
 , where    (   ⁄    ).     √   (    )⁄ *
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]}      √    ⁄       √    and g = ,√   (   )

     
 

  
-⁄  are constants. We 

find that  ( ) has a minimum at    0 if    > 0 and a maximum at    0, if    < 0. 

Hence, the condition for aggregation is    = 0, which yields that   ~      . The mean 

field analysis reveals that the stability of the aggregated phase is in qualitative 

agreement to that obtained from our numerical simulation for low   . This is not 

surprising for the mean field treatment is valid for longer ranged potential. However, 

in this analysis we overestimate stability of the aggregated phase which could be due 

to mean field nature of the analysis which ignores fluctuations. 
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6.4. Discussions: 

Let us now compare our results to existing studies on protein aggregation. 

FCS study
24

 on soluble aggregates formed by two Alzheimer’s amyloid β peptides 

(Aβ1-40 and Aβ1-42) indicates that size of the clusters increases monotonously with 

increasing ionic strength of the solution by adding NaCl. Scattering measurement on 

β-amyloid shows that salts of divalent metal ions at micro-molar concentration can 

prevent
25

 formation of this oligomeric population by leading them precipitated to 

higher size assembly. These observations are qualitatively consistent with our results. 

We find from our simulation that for a fixed value of    (= 3.0),   ̅ ~ (  )    below 

   
 . This is shown in     ̅ vs      plot in Fig.6.3.(d). This result is in qualitative 

agreement to the reported experimental observations
24

 on β amyloid, where mean size 

of the aggregated cluster exhibits super linear dependence on ionic strength of the 

solution.  

In our model system probability of finding a pair of harmonically bound 

solvophobic particles at a inter-surface separation   is ~    
 

 
   

. The length scale of 

bound pair is ~     ⁄ , which can be thought of as length scale of attraction. The range 

for screened electrostatic repulsion is given by    . We show in Table.6.1. (  )     

and corresponding    
  . We find that    

    (  )     for large   ; otherwise, 

   
    (  )    . Thus our model fit over a limited range of parameter values with the 

standard model of colloidal aggregation
37, 38

, having attraction shorter ranged than 

repulsion. This difference can be traced to the nature of solvent depletion in our 

system.  Here depletion is governed by the thermodynamics of the system
43

. The 

range of depletion can be varied
43

 by proximity to liquid-vapour transition line where 

vapour is stabilized near the solvophobic surface. It has been shown in the earlier 
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work
43

 that   has nontrivial dependence on temperature with a maximum at      , 

so that in the vicinity of this temperature,       
    (     )

 . Our analysis 

indicates that    [  (  )    ] will have a minimum at      . This means a 

nontrivial feature of stability of finite sized clusters:  the finite clusters are stable on 

both ends excluding the neighborhood of the maximum point. 

Table.6.1. Range of solvophobicity mediated attraction and electrostatic 

interactions for different values of    and corresponding    . 

        ⁄         
   

10.0 0.32 2.0 0.50 

6.0 0.41 3.0 0.33 

4.0 0.50 4.0 0.25 

3.0 0.58 13.0 0.08 

 

The formation of large aggregates by increasing salt concentration particularly 

in the low    regime is analogus to salting out effect known in many proteins
55, 56

. 

Metal nano particles capped with ligands 
45

 can be a realization of the model studied 

here. Such capped nano particles form nm sized clusters which are having immense 

technological importance
57, 58

, mainly in the fields of nano medicine, optics, catalysis, 

sensor. In particular our analysis may be useful guide to tune the cluster sizes. Apart 

from misfolded proteins, there are other molecular assemblies of soft matter systems 

where hydrophobic parts are exposed and hydrophilic groups remain buried. Surface 

modification of halloysite nano-tube clay by proper surfactant leads to fabrication of 

inorganic reverse micelle with hydrophobic shell and hydrophilic cavity
59

. These 

tubular self-assembled structures can be used for entrapment of antibacterial agent 

and in pharmaceutical application
59

. Similarly, amphiphilic organic molecule and clay 
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minerals nano-platelets (CNP) like montmorillonite and laponite can assemble
60

 into 

2D nano-composite hydrogel. This assembly
60

 with hydrophobic surface and 

hydrophilic interlayer structure has potential application in biomedical and tissue 

engineering. The critical balance between underlying hydrophobic and electrostatic 

interaction towards stability of these supramolecular materials is important in 

governing their functionalities. Our model can be generalized to include molecular 

shape anisotropy relevant for the nm sized supra-molecular assemblies in the system 

by taking separate charged site, connected to the hydrophobic site. However, given 

the interactions between charged and hydrophobic sites are weak, the basic results of 

our simplified model should hold good.  

6.5. Conclusions:  

To conclude, we have studied role of solvophobicity mediated attraction 

and electrostatic repulsion in governing aggregation of misfolded protein. Our 

model suggests that by tuning salt concentration of the solution, finite size 

clusters can be stabilized. We propose that our model can be guide to molecular 

control over amphiphilic self-assembly of nm size.  
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Appendix I 

Details of mean field treatment: 

Using Ornsteon-Zernike equation under MSA approximation we obtain that direct 

correlation function for electrostatic screening is,  

        ( )       ( ) 

                         (        ,    - ⁄ )           ⁄          

                               ⁄      (1).          

Assuming,    (        ,    - ⁄ )       ⁄ . 

By performing Fourier Transform of equation (1) we find that,                                      

         ( )   (   √  ) ∫       (     ⁄ )    

  
  ⁄ ∫        ∫   

  

 

 

 
 

                     (     √  ⁄ ) ∫                

  
     ∫        

 

 
       (2). 

Assuming ,        in equation (2) we have  

        ( )       √  ∫           
  

  

     ∫   
  

  

 

                    =    √  ∫       
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                       √  ∫       
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                   (    √    ),  (     ) (     )⁄   ⁄    (     ) (     )⁄ - 
   

                  (    √    )⁄ ,  (    )⁄    (    )-⁄  

                  (   √    )⁄ , (    )⁄    (    )-⁄  

                  (    √    ),   (     )⁄⁄ ] 

                  
    √  

  
(      ⁄ )                                                                   (3). 

Putting    0 in equation (3) we get,  

                         ( )   (    √    )⁄ (       ⁄ )                                 (4). 

For solvophobicity mediated attraction we consider,  

                                        ( )     , (   (   ⁄ )  )        - 

 (   ⁄ ),       *(   ⁄ )    +- 

 (   )⁄ ,      *
  
 

 
   +- 

 *(   )⁄ ,           -+   (     ⁄ ) (assuming (  
  ⁄    )   ) 

         (   )⁄ ,(   ) -   (     ⁄ ). 

Using,       , we get,  

   ( )  (      )⁄   (     ⁄ )         (5). 

Using equation (5) we find that direct correlation function for solvophobicity 

mediated attraction is,  

      ( )       ( ) 
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                                                      (     
 

  )⁄   (      )⁄                         (6). 

By performing Fourier transform of equation (6) we obtain,  

      ( )
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Next, we solve equation (7) part wise and find that,  
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Using equations (8) and (9) in equation (7) we find,  
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Using equation (4) and equation (10) we obtain that, total component of Fourier 

transform of direct correlation function is,   
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In our calculation   (  
  ⁄    ) = 0.61  ~ 0.31 nm,    1.0 nm, using these 

values in equation (11) we obtain,  
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Considering dominating term of    of equation (12) we get,  

 ( )         (   √    ⁄  ,√   (    )
     

 

  
-)⁄  

Considering constant terms    √     and ,√   (   )
     

 

  
-   ⁄ , we obtain, 

 ( )         (   ⁄    )                              (13).                                         

We can see from equation (13) that condition of aggregation can be found by putting 

coefficient of     0, that leads  

                              ⁄                                       (14). 

Thus, from equation (14), we find that at aggregation          . 
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CHAPTER 7 

Conclusion & future direction 

Using time dependent dihedral cross correlation functions, we explain how the 

functionality of a protein is manifested in terms of dynamically correlated distant 

residue pairs. Thus, this technique might be useful to understand allosteric mechanism 

in more details and can have impacts on associated applications. The binding of 

effector molecules at the specific site of an allosteric protein can affect functionality 

of the distant active site of that particular protein. The biosensors
1
 detect the signal 

resulting from interactions between proteins and stimuli from molecular to 

macroscopic level. Thus, the allosteric proteins have the potential
1, 2

 to not only act as 

biosensors but also as novel switches in complex circuits, regulators for inducible 

control of multiple genes along with target for drug design.  

Understanding protein-nano particle interactions is essential to stabilize drug 

delivery system and thus is highly emerging area of research in biomedical 

applications
3
. Modified surface of nano particles accordingly, make them 

biodegradable and biocompatible, so that they can be used for encapsulation, bio 

conjugation, and therapeutic immobilization techniques. Here, we propose an 

alternative method on basis of diffusion dynamics of nano sized ligands, to explain 

how the protein functions are driven by their electrostatic interactions with nano 

particles. Moreover, due to specific location of the binding pockets, the ligand 

attached protein may act as directed template for heterogeneous structure at nano 

meter length scale
4
. 
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In our study, we use conformational thermodynamics to reveal mechanism 

behind changes in protein conformations in terms of free energy and entropy. This 

approach may provide insight to material science application driven by molecular 

switch using protein conformations as scaffold
5
. Protein conformational switches

6
 

signify noticeable structural changes of the proteins upon interacting with external 

stimuli, like absorbing a photon or binding with a drug. Understanding the switching 

mechanism can lead to the new development in protein engineering, by which 

function of a protein can be modulated accordingly using the proper stimuli. 

Similarly, by using biosensors like biocompatible electronic device or fluorescence 

sensitive bio-molecules, response of the protein in terms of conformational switches 

can be detected.  

Finally, our study on misfolded proteins based on model with hydrophobic 

surface along with hydrophilic core can yield idea to gain molecular control over 

general amphiphilic assembly
7
. This is also useful for designing materials with tuning 

optical activity in technological applications
8
, bio-diagnostics

9
 and energy 

conversion
10

.  
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